Skip to main content
Log in

Improvement of Glass Transition and Flowability of Reduced-Fat Coffee Creamer: Effect of Fat Replacer and Fluidized Bed Drying

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effects of inulin (0, 2.5, 5, and 7.5 %), maltodextrin (0, 15, 20, and 25 %), and different drying processes (one- and two-stage drying) on the morphology and physicochemical properties of regular and instant reduced-fat creamers. The present study showed that the drum-dried creamer containing 0 % maltodextrin and 0 % inulin was fully sticky powder with dark brown color. It was found that the maximum increase in maltodextrin (from 0 to 25 %) and inulin (from 0 to 7.5 %) resulted in the creamer with the highest glass transition temperature and the lowest stickiness among all formulated creamers. The application of two-stage drying involving fluidized bed drying resulted in further improvement of the glass transition temperature and stickiness of the reduced fat instant creamer. The instant creamers obtained from two-stage drying had considerably higher glass transition temperature and lower bulk density than the regular creamers from one-stage drying. Such improvement could be due to the reduction of bulk density induced by fluidized bed drying. This might be because of higher porosity of the creamer particles after agglomeration. The current study revealed that the addition of high amounts of inulin and maltodextrin also played a significant role in the reduction of bulk density and further improvement of glass transition temperature (Tg) and solubility of the reduced fat creamer. The instant reduced fat creamer containing 25 % maltodextrin and 7.5 % inulin had the most desirable characteristics among all formulated creamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abiad, M. G., Gonzalez, D. C., Mert, B., Campanella, O. H., & Carvajal, M. T. (2010). A novel method to measure the glass and melting transitions of pharmaceutical powders. International Journal of Pharmaceutics, 396(1), 23–29.

    Article  CAS  Google Scholar 

  • Adhikari, B., Howes, T., Bhandari, B. R., & Truong, V. (2003). Characterization of the surface stickiness of fructose–maltodextrin solutions during drying. Drying Technology, 21, 17–34.

    Article  CAS  Google Scholar 

  • ADPI (American Dairy Products Institute). (1992). Standards for grades of dry milk including method of analysis. Bull. 916. Chicago, IL, USA.

  • Akinori, M., Masata, M., & Masao, M. (1998). Effect of crystallinity on the glass transition temperature of starch. Journal of Agricultural and Food Chemistry, 46, 98–103.

    Article  Google Scholar 

  • Bhandari, B. R., Datta, N., & Howes, T. (1997). Problem associated with spray drying of sugar–rich foods. Drying Technology, 15, 671–684.

    Article  CAS  Google Scholar 

  • Bröckel, U., Wahl, M., Kirsch, R., & Feise, H. J. (2006). Formation and growth of crystal bridges in bulk solids. Chemical Engineering & Technology, 29, 691–695.

    Article  Google Scholar 

  • Caric, M. (2003). Milk powders: types and manufacture and physical and functional properties of milk powders. In H. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy sciences (pp. 1869–1880). New York: Academic.

    Google Scholar 

  • Chen, X. D., & Özkan, N. (2007). Stickiness, functionality, and microstructure of food powders. Drying Technology, 25, 959–969.

    Article  Google Scholar 

  • Chung, M. S., Ruan, R. R., Chen, P., Chung, S. H., Ahn, T. H., & Lee, K. H. (2000). Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. Journal of Food Science, 65, 134–138.

    Article  CAS  Google Scholar 

  • Cruz, M. A. A., Passos, M. L., & Ferreira, W. R. (2005). Final drying of whole milk powder in vibrated-fluidized beds. Drying Technology, 23, 2021–2037.

    Article  Google Scholar 

  • Dacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573.

  • Descamps, N., Palzer, S., Roos, Y. H., & Fitzpatrick, J. J. (2013). Glass transition and flowability/caking behaviour of maltodextrin DE 21. Journal of Food Engineering, 119, 809–813.

    Article  CAS  Google Scholar 

  • Dhanalakshmi, K., & Bhattacharya, S. (2014). Agglomeration of turmeric powder and its effect on physico-chemical and microstructural characteristics. Journal of Food Engineering, 120, 124–134.

    Article  CAS  Google Scholar 

  • Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441.

    Article  CAS  Google Scholar 

  • El-Nagar, G., Clowes, G., Tudoricǎ, C. M., Kuri, V., & Brennan, C. S. (2002). Rheological quality and stability of yoghurt-ice cream with added inulin. International Journal of Dairy Technology, 55, 89–93.

    Article  CAS  Google Scholar 

  • Fitzpatrick, J. J., Barry, K., Cerqueira, P. S. M., Iqbal, T., O’Neill, J., & Roos, Y. H. (2007). Effect of composition and storage conditions on the flowability of dairy powders. International Dairy Journal, 17, 383–392.

    Article  CAS  Google Scholar 

  • Fox, T. G., & Flory, P. J. (1950). Second-order transition temperatures and related properties of polystyrene. Journal of Applied Physics, 21, 581–591.

    Article  CAS  Google Scholar 

  • Glibowski, P., & Bukowska, A. (2011). The effect of pH, temperature and heating time on inulin chemical stability. Acta Scientiarum Polonorum Seria: Technologia Alimentaria, 10, 189–196.

    CAS  Google Scholar 

  • Golde, A. E., & Schmidt, K. A. (2005). Quality of coffee creamers as a function of protein source. Journal of Food Quality, 28(1), 46–61.

    Article  CAS  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. Journal of Food Engineering, 66, 35–42.

    Article  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. powder properties. Drying Technology, 26, 726–737.

    Article  CAS  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11, 342–351.

    Article  CAS  Google Scholar 

  • Griffin, V. K., & Brooks, J. R. (1989). Production and size distribution of rice maltodextrins hydrolyzed from milled rice flour using heat‐stable alpha‐amylase. Journal of Food Science, 54, 190–193.

    Article  CAS  Google Scholar 

  • Hooda, S., & Jood, S. (2005). Organoleptic and nutritional evaluation of wheat biscuits supplemented with untreated and treated fenugreek flour. Food Chemistry, 90, 427–435.

  • Hursh, H., & Martin, J. (2005). Low-carb and beyond: the health benefits of inulin. Cereal Foods World, 50, 57–60.

    Google Scholar 

  • Jakubczyk, E., Ostrowska‐Ligeza, E., & Gondek, E. (2010). Moisture sorption characteristics and glass transition temperature of apple puree powder. International Journal of Food Science and Technology, 45, 2515–2523.

    Article  CAS  Google Scholar 

  • Jinapong, N., Suphantharika, M., & Jamnong, J. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84, 194–205.

    Article  Google Scholar 

  • Kage, M., Yang, Q., Sato, H., Matsumoto, S., Kaji, R., Akiguchi, I., & Tooyama, I. (2001). Acidic fibroblast growth factor (FGF-1) in the anterior horn cells of ALS and control cases. Neuroreport, 12, 3799–3803.

    Article  CAS  Google Scholar 

  • Kalogiannia, E. P., Xynogalos, V. A., Karapantsios, T. D., & Kostloglou, M. (2002). Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. LWT- Food Science and Technology, 35(8), 703–711.

    Article  Google Scholar 

  • Kasapis, S. (2005). Glass transition phenomena in dehydrated model systems and foods: a review. Drying Technology, 23, 731–757.

    Article  CAS  Google Scholar 

  • Kelly, P. M., Oldfield, D. J., & O’Kennedy, B. T. (1999). The thermostability of spray dried imitation coffee whiteners. International Journal of Dairy Technology, 52, 107–113.

    Article  CAS  Google Scholar 

  • Kha, T. C., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98, 385–392.

    Article  CAS  Google Scholar 

  • Kim, Y., Faqih, M. N., & Wang, S. S. (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46, 135–145.

    Article  CAS  Google Scholar 

  • Le Meste, M., Champion, D., Roudaut, G., Blond, G., & Simatos, D. (2002). Glass transition and food technology: a critical appraisal. Journal of Food Science, 67, 2444–2458.

    Article  Google Scholar 

  • Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2009). Characterization of the influence of main emulsion components on cloudiness, size index, conductivity and emulsion stability of orange beverage emulsion using response surface methodology. Food Hydrocolloids, 23, 271–280.

  • Musielak, G., & Mierzwa, D. (2009). Permanent strains in clay-like material during drying. Drying Technology, 27(7–8), 894–902.

    Article  CAS  Google Scholar 

  • Nindo, C. I., & Tang, J. (2007). Refractance Window dehydration technology: a novel contact drying method. Drying Technology, 25(1), 37–48.

    Article  CAS  Google Scholar 

  • Oldfield, D., & Singh, H. (2005). Functional properties of milk powders. Food SScience and Technology-New York-Marcel Dekker, 146, 365.

    CAS  Google Scholar 

  • Papadakis, S. E., Gardeli, C., & Tzia, C. (1998). Raisin extract powder: production, physical and sensory properties. In Proc. 11th International Drying Symposium IDS (Vol. 98, pp. 1207–1213).

  • Peleg, M., & Mannheim, C. H. (1977). The mechanism of caking of powdered onion. Journal of Food Processing and Preservation, 1, 3–11.

    Article  Google Scholar 

  • Potter, N. N. (1968). Food science. Westport: AVI Publishing Company.

    Google Scholar 

  • Pua, C. K., Hamid, N. S. A., Tan, C. P., Mirhosseini, H., Rahman, R. B. A., & Rusul, G. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT--Food Science and Technology, 43, 343–349.

    Article  CAS  Google Scholar 

  • Ren, G. Y., Li, D., Wang, L. J., Özkan, N., & Mao, Z. H. (2010). Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate Polymers, 79, 101–105.

    Article  CAS  Google Scholar 

  • Ronkart, S. N., Blecker, C. S., Fourmanoir, H., Fougnies, C., et al. (2007). Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604, 81–87.

    Article  CAS  Google Scholar 

  • Roos, Y. H. (1995). Glass transition-related physicochemical changes in foods: chemical and rheological changes during phase transition in food. Food Technology, 49(10), 97–102.

    CAS  Google Scholar 

  • Schuck, P., Jeantet, R., & Dolivet, A. (2012). Analytical methods for food and dairy powders. John Wiley & Sons.

  • Schuck, P., le Floch-Fouere, C., & Jeantet, R. (2013). Changes in functional properties of milk protein powders: effects of vacuum concentration and drying. Drying Technology, 31, 1578–1591.

    Article  CAS  Google Scholar 

  • Singh, A. K., Selvam, R. P., & Sivakumar, T. (2010). Isolation, characterisation and formulation properties of a new plant gum obtained from mangifera indica. International Journal of Pharmacy Biomedical Research, 1, 35–41.

    CAS  Google Scholar 

  • Tabatabaee Amid, B., & Mirhosseini, H. (2012). Optimization of aqueous extraction of gum from Durian (Durio zibethinus) seed: a potential, low cost source of hydrocolloid. Food Chemistry, 132, 1258–1268.

  • Uthumporn, U., Zaidul, I. S., & Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88, 47–54.

    Article  CAS  Google Scholar 

  • Vega-Mercado, H., Marcela Gongora-Nieto, M., & Barbosa-Cánovas, G. V. (2001). Advances in dehydration of foods. Journal of Food Engineering, 49, 271–289.

    Article  Google Scholar 

  • WHO (Word health organization) (2012). Bulk density and tapped density of powders. Document QAS/11.450.

Download references

Acknowledgments

We gratefully appreciate the financial support from Ministry of Science, Technology, and Innovation for EScience Fund (03-01-04-SF1884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayatnia, S., Mirhosseini, H., Tamnak, S. et al. Improvement of Glass Transition and Flowability of Reduced-Fat Coffee Creamer: Effect of Fat Replacer and Fluidized Bed Drying. Food Bioprocess Technol 9, 686–698 (2016). https://doi.org/10.1007/s11947-015-1666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1666-x

Keywords

Navigation