Skip to main content
Log in

Extrudate expansion model in a twin-screw extrusion cooking process considering melt rheological property

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A new extrudate bulk density model framework was developed, which is taking into account the melt rheological effects based on mixing principle and non-Newtonian power law theory for a twin-screw extrusion cooking process. The main ingredients in the extrusion process investigation were wheat, fish meal and soybean protein. The average absolute deviation (AAD) of the model prediction for extrudate bulk density is 5.3 % for the investigated process. The prediction results demonstrate that the proposed equation can be used to model the extrudate bulk density in the twin-screw extruder extrusion cooking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008a). Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. Journal of the Science of Food and Agriculture, 88, 1648–1659.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008b). Twin-screw extrusion of barley-grape pomace blends: extrudate characteristic and determination of optimum processing conditions. Journal of Food Engineering, 89, 24–32.

    Article  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of screw configuration and raw material on some properties of barley extrudates. Journal of Food Engineering, 92, 377–382.

    Article  Google Scholar 

  • Alvarez-Martinez, L., Kondury, K. P., & Harper, J. M. (1988). A general model for expansion of extruded products. Journal of Food Science, 53, 609–615.

    Article  Google Scholar 

  • Alves, M. V. C., Barbosa, J. R., & Prate, A. T. (2009). Analytical solution of single screw extrusion applicable to intermediate values of screw channel aspect ratio. Journal of Food Engineering, 92, 152–156.

    Article  Google Scholar 

  • Atkins, P. W. (1994). Physical chemistry (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Bruin, S., van Zuilichem, D. J., & Stolp, W. (1978). A review of fundamental and engineering aspects of extrusion of biopolymers in a single-screw extruder. Journal Food Process Engineering, 2, 1–37.

    Article  CAS  Google Scholar 

  • Buckingham, E. (1914). Similar systems and dimensional equations. Physical Review, 4, 345–376.

    Article  Google Scholar 

  • Cai, W., & Diosady, L. L. (1993). Model for gelatinization of wheat starch in a twin-screw extruder. Journal of Food Science, 58, 872–875.

    Article  CAS  Google Scholar 

  • Chakraborty, S. K., Singh, D. S., Kumbhar, B. K., & Singh, D. (2009). Process parameter optimization for textural properties of ready-to-eat extruded snack food from millet and legume pieces blends. Journal of Texture Studies, 40, 710–726.

    Article  Google Scholar 

  • Chen, F. L., Wei, Y. M., Zhang, B., & Ojokoh, A. O. (2010). System parameters and product properties response of soybean protein extruded at wide moisture range. Journal of Food Engineering, 96, 208–213.

    Article  CAS  Google Scholar 

  • Cheng, H., & Friis, A. (2010). Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology. Food and Bioproducts Processing, 88, 188–194.

    Article  Google Scholar 

  • Chiruvella, R. V., Jaluria, Y., & Karwe, M. V. (1996). Numerical simulation of the extrusion process for food materials in a single-screw extruder. Journal of Food Engineering, 30, 449–467.

    Article  Google Scholar 

  • Dhanasekharan, K. M., & Kokini, J. L. (2003). Design and scaling of wheat dough extrusion by numerical simulation of flow and heat transfer. Journal of Food Engineering, 60, 421–430.

    Article  Google Scholar 

  • Ficarella, A., Milanese, M., & Laforgia, D. (2006a). Numerical study of the extrusion process in cereals production: part I. Fluid-dynamic analysis of the extrusion system. Journal of Food Engineering, 73, 103–111.

    Article  Google Scholar 

  • Ficarella, A., Milanese, M., & Laforgia, D. (2006b). Numerical study of the extrusion process in cereals production: part II. Analysis of variance. Journal of Food Engineering, 72, 179–188.

    Article  Google Scholar 

  • Ganjyal, G. M., Hanna, M. A., & Jones, D. D. (2003). Modeling selected properties of extruded waxy maize cross-linked starches with neural networks. Journal of Food Science, 68(4), 1384–1388.

    Article  CAS  Google Scholar 

  • Gonzalez, R. J., Torres, R. L., & Greef, D. M. D. (2001). Application of an ideal model to the scaling up of a laboratory extruder. Journal of Food Engineering, 48, 45–51.

    Article  Google Scholar 

  • Harper, J. M., Rhodes, T. P., & Wanninger, L. A., Jr. (1971). Viscosity model for cooked cereal doughs. Chemical engineering progress symposium, 67(108), 40–45.

    Google Scholar 

  • Kokini, J. L. (1993). The effect of processing history on chemical changes in single-and twin-screw extruders. Trends in Food Science & Technology, 4, 324–329.

    Article  CAS  Google Scholar 

  • Kokini, J. L., Ho, C. T., & Karwe, M. V. (1992). Food extrusion science and technology. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Launary, B., & Lisch, J. M. (1983). Twin-screw extrusion cooking of starches: flow behaviour of starch pastes, expansion and mechanical properties of extrudates. Journal of food Engineering, 2(4), 259–280.

    Article  Google Scholar 

  • Levine, L., & Miller, R. C. (2007). Extrusion processes. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (2nd ed., pp. 799–846). Boca Raton: CRC Press.

    Google Scholar 

  • Manas Zloczower, I. (2009). Mixing and compounding of polymers: theory and practice (2nd ed.). Munich: Hanser.

    Book  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed., p. 427). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Moraru, C. I., & Kokini, J. L. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 4, 120–138.

    Google Scholar 

  • Mueser, F., Pfaller, W., & van Langerich, B. (1987). Technical aspects regarding specific changes to the characteristic properties of extruders by HTST extrusion cooking. In C. O’Connor (Ed.), Extrusion technology for the food industry (pp. 35–53). London: Elsevier Applied Science Publishers.

    Google Scholar 

  • Rayleigh, L. (1915). The principle of similitude. Nature, 95(2368), 66–68.

    Google Scholar 

  • Shankar, T. J., & Bandyopadhyay, S. (2004). Optimization of extrusion process variables using a genetic algorithm. Food and Bioproducts Processing, 82(C2), 143–150.

    Article  Google Scholar 

  • Tayeb, J., Valle, G. D., Barres, C., & Vergnes, B. (1992). Simulation of transport phenomena in twin-screw extruders. In J. L. Kokini, C. T. Ho, & M. V. Karwe (Eds.), Food Extrusion Science and Technology (pp. 41–56). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Uhl, V. W., & Gray, J. B. (Eds.). (1966). Mixing Theory and Practice, Vol 1. New York: Academic Press.

    Google Scholar 

  • van den Einde, R. M., van der Goot, A. J., & Boom, R. M. (2003). Understanding molecular weight reduction of starch during heating-shearing processes. Journal of Food Science, 68, 2396–2404.

    Article  Google Scholar 

  • van den Einde, R. M., van der Goot, A. J., & Boom, R. M. (2004). Molecular breakdown of corn starch by thermal and mechanical effects. Carbohydrate Polymers, 56, 415–422.

    Article  Google Scholar 

  • van den Einde, R. M., van der Veen, M. E., Bosman, H., van der Goot, A. J., & Boom, R. M. (2005). Modeling macromolecular degradation of corn starch in a twin screw extruder. Journal of food Engineering, 66, 147–154.

    Article  Google Scholar 

  • Weert, X., Lawrence, C. J., Adams, M. J., & Briscoe, B. J. (2001). Screw extrusion of food powders: prediction and performance. Chemical Engineering Science, 56, 1933–1949.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Innovation Fund Denmark for support of the project and Aller Aqua A/S, Denmark, for providing raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Hansen, J.H. Extrudate expansion model in a twin-screw extrusion cooking process considering melt rheological property. Food Bioprocess Technol 9, 604–611 (2016). https://doi.org/10.1007/s11947-015-1655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1655-0

Keywords

Navigation