Skip to main content
Log in

Determination and Prediction of Fumonisin Contamination in Maize by Surface–Enhanced Raman Spectroscopy (SERS)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The potential and limitation of surface-enhanced Raman spectroscopy (SERS) method was investigated to develop an accelerated spectroscopic method as an alternative analytical technique to commonly used wet chemical methods for fumonisin analysis in maize. SERS spectral difference among groups of ground maize samples with different concentrations of fumonisins more clearly reflected the level of fumonisin contamination and its effect on physicochemical properties of ground maize samples than conventional Raman spectral difference. In general, chemometric classification models exhibited moderately acceptable correct classification rates (68.0–100.0 % for training dataset and 58.8–85.3 % for validation dataset) and no or little false–negative error. The k-nearest neighbor models applied to validation dataset slightly outperformed over other classification models, showing correct classification rates of 70.6–79.4 %. Chemometric quantification models using validation dataset also yielded a good predictive power and ability, showing satisfactory regression quality (slope = 0.902–1.096), high coefficient of determination (r 2 = 0.825–0.940), and low root-mean-square error of prediction (RMSEP = 11.162–19.954 mg/kg), with no statistical significant difference with the reference value. The multiple linear regression models showed better quality of linear regression (slope = 0.902–1.076), stronger correlation coefficient (r = 0.948–0.969), and higher predictive accuracy (r 2 = 0.900–0.940) than other quantification models. The proposed SERS method would be a suitable and convenient analytical tool with a great potential for improvement in qualitative and quantitative characterization of fumonisins in maize, serving as a valuable screening tool for maize samples contaminated with fumonisins at a point of sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists, method 44-15A (moisture) (10th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Abramović, B., Jajić, I., Abramović, B., Cosić, J., & Jurić, V. (2007). Detection of deoxynivalenol in wheat by Fourier transform infrared spectroscopy. Acta Chimica Slovenica, 54, 859–867.

    Google Scholar 

  • Bai, F., Wang, D., Huo, Z., Chen, W., Liu, L., Liang, X., Chen, C., Wang, X., Ping, Q., & Li, Y. (2007). A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angewandte Chemie International Edition, 46, 6650–6653.

    Article  CAS  Google Scholar 

  • Bezuidenhout, S. C., Gelderblom, W. C., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F., Spiteller, G., & Vleggaar, R. (1988). Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. Journal of the Chemical Society, Chemical Communications, 11, 743–745.

    Article  Google Scholar 

  • Byler, D. M., & Susi, H. (1988). Application of computerized infrared and Raman spectroscopy to conformation studies of casein and other food proteins. Journal of Industrial Microbiology, 3, 73–88.

    Article  CAS  Google Scholar 

  • Chen, L. M., & Liu, Y. N. (2012). Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 43, 986–991.

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission (2012). Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods, Discussion paper on proposed draft maximum levels for fumonisins in maize and maize-products and associated sampling plans. Available at: ftp://ftp.fao.org/codex/meetings/cccf/cccf6/cf06_18e.pdf. Accessed 2 June 2015.

  • Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1990). Introduction to Infrared and Raman Spectroscopy (3rd ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Craig, A. P., Franca, A. S., & Irudayaraj, J. (2013). Surface-enhanced Raman spectroscopy applied to food safety. Annual Review of Food Science and Technology, 4, 369–380.

    Article  CAS  Google Scholar 

  • Cruz, A. G., Cadena, R. S., Alvaro, M. B. V. B., Sant’Ana, A. S., Oliveira, C. A. F., Faria, J. A. F., & Ferreira, M. M. C. (2013). Assessing the use of different chemometric techniques to discriminate low-fat and full-fat yogurts. LWT--Food Science and Technology, 50, 210–214.

    Article  CAS  Google Scholar 

  • Delwiche, S. R., & Gaines, C. S. (2005). Wavelength selection for monochromatic and bichromatic sorting of Fusarium-damaged wheat. Applied Engineering in Agriculture, 21, 681–688.

    Article  Google Scholar 

  • DiCostanzo, A., Johnston, L. F., & Murphy, M. (1995). Effects of molds on nutrient content of feeds reviewed. Feedstuffs, 16, 17–54.

    Google Scholar 

  • Dowell, F. E., Pearson, T. C., Maghirang, E. B., Xie, F., & Wicklow, D. T. (2002). Reflectance and transmittance spectroscopy applied to detecting fumonisin in single corn kernels infected with Fusarium verticillioides. Cereal Chemistry, 79, 222–226.

    Article  CAS  Google Scholar 

  • Everitt, B. S., & Dunn, G. (2001). Principal component analysis. In B. S. Everitt & G. Dunn (Eds.), Applied Multivariate Data Analysis (pp. 48–73). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • FDA (2001) (US Food and Drug Administration). Guidance for industry: fumonisin levels in human foods and animal feeds; final guidance. Available at: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ChemicalContaminantsMetalsNaturalToxinsPesticides/ucm109231.htm. Accessed 5 May 2015.

  • Fernández-Ibañez, V., Soldado, A., Martínez-Fernández, A., & de la Roza-Delgado, B. (2009). Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barely as analytical quality assessment. Food Chemistry, 113, 629–634.

    Article  Google Scholar 

  • Golightly, R. S., Doering, W. E., & Natan, M. J. (2009). Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano, 3, 2859–2869.

    Article  CAS  Google Scholar 

  • Gordon, S. R., Jones, R. W., McClelland, J. F., Wicklow, D. T., & Greene, R. V. (1999). Transient infrared spectroscopy for detection of toxigenic fungi in corn: potential for on-line evaluation. Journal of Agricultural and Food Chemistry, 47, 5267–5272.

    Article  CAS  Google Scholar 

  • Greene, R. V., Gordon, S. H., Jackson, M. A., & Bennett, G. A. (1992). Detection of fungal contamination in corn: potential of FTIR-PAS and -DRS. Journal of Agricultural and Food Chemistry, 40, 1144–1149.

    Article  CAS  Google Scholar 

  • Grow, A. E., Wood, L. L., Claycomb, J. L., & Thompson, P. A. (2003). New biochip technology for label-free detection of pathogens and their toxins. Journal of Microbiological Methods, 53, 221–233.

    Article  CAS  Google Scholar 

  • Haynes, C. L., McFarland, A. D., & Van Duyne, R. P. (2005). Surface-enhanced Raman spectroscopy. Analytical Chemistry, 77, 338A–346A.

    Article  CAS  Google Scholar 

  • He, L., Deen, B., Rodda, T., Ronningen, I., Blasius, T., Haynes, C., Diez-Gonzalez, F., & Labuza, T. P. (2011a). Rapid detection of ricin in milk using immunomagnetic separation combined with surface-enhanced Raman spectroscopy. Journal of Food Science, 76, N49–N53.

    Article  CAS  Google Scholar 

  • He, L., Rodda, T., Haynes, C. L., Deschaines, T., Strother, T., Diez-Gonzalez, F., & Labuza, T. P. (2011b). Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Analytical Chemistry, 83, 1510–1513.

    Article  CAS  Google Scholar 

  • Herrero, A. M., Cambero, M. I., Ordonez, J. A., De la Hoz, L., & Carmona, P. (2008). Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chemistry, 109, 25–32.

    Article  CAS  Google Scholar 

  • Johnson, D. E. (1998). Discriminant analysis. In D. E. Johnson (Ed.), Applied Multivariate Methods for Data Analyst (pp. 217–285). Pacific Grove, CA: Duxbury Press.

    Google Scholar 

  • Kim, J., Hwang, J., & Chung, H. (2008). Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube. Analytica Chimica Acta, 629, 119–127.

    Article  CAS  Google Scholar 

  • Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3912–3918.

    Article  CAS  Google Scholar 

  • Lee, K. M., Herrman, T. J., & Jones, B. (2009). Application of multivariate statistics in a risk-based approach to regulatory compliance. Food Control, 20, 17–26.

    Article  Google Scholar 

  • Lee, K. M., Herrman, T. J., & Yun, U. (2014). Application of Raman spectroscopy for qualitative and quantitative analysis of aflatoxins in ground maize samples. Journal of Cereal Science, 59, 70–78.

    Article  Google Scholar 

  • Lee, K. M., Herrman, T. J., Nansen, C., & Yun, U. (2013). Application of Raman spectroscopy for qualitative and quantitative detection of fumonisins in ground maize samples. International Journal of Regulatory Science, 1, 1–14.

    CAS  Google Scholar 

  • Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86, 3391–3395.

    Article  CAS  Google Scholar 

  • Li, W., Camargo, P. H. C., Lu, X., & Xia, Y. (2009). Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Letters, 9, 485–490.

    Article  CAS  Google Scholar 

  • Li, W., Herrman, T. J., & Dai, S. Y. (2010). Rapid determination of fumonisins in corn-based products by liquid chromatography-tandem mass spectrometry. Journal of AOAC International, 93, 1472–1481.

    CAS  Google Scholar 

  • Li, Y., Liu, X., & Lin, Z. (2012). Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chemistry, 132, 1549–1554.

    Article  CAS  Google Scholar 

  • Liu, Y., Delwiche, S. R., & Dong, Y. (2009). Feasibility of FT-Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley. Food Additives and Contaminants, 26, 1396–1401.

    Article  CAS  Google Scholar 

  • Logrieco, A., Ferracane, R., Haidukowsky, M., Cozzi, G., Visconti, A., & Ritieni, A. (2009). Fumonisin B2 production by Aspergillus niger from grapes and natural occurrence in must. Food Additives and Contaminants, 26, 1495–1500.

    Article  CAS  Google Scholar 

  • Ma, C. Y., & Phillips, D. L. (2002). FT-Raman spectroscopy and its applications in cereal science. Cereal Chemistry, 79, 171–177.

    Article  CAS  Google Scholar 

  • Matera, J. A., Cruz, A. G., Raices, R. S., Silva, L. M. C., Nogueira, L. C., Quitério, S. L., Cavalcanti, R. N., Freiras, M. Q., & Conte Júnior, C. A. (2014). Discrimination of Brazilian artisanal and inspected pork sausages: application of unsupervised, linear and non-linear supervised chemometric methods. Food Research International, 64, 380–386.

    Article  CAS  Google Scholar 

  • Mecker, L. C., Tyner, K. M., Kauffman, J. F., Arzhantsev, S., Mans, D. J., & Gryniewicz-Ruzicka, C. M. (2012). Selective melamine detection in multiple sample matrices with a portable Raman instrument using surface enhanced Raman spectroscopy-active gold nanoparticles. Analytica Chimica Acta, 733, 48–55.

    Article  CAS  Google Scholar 

  • Paepens, C., De Saeger, S., Van Poucke, C., Dumoulin, F., Van Calenbergh, S., & Van Peteghem, C. (2005). Development of a liquid chromatography/tandem mass spectrometry method for the quantification of fumonisin B1, B2 and B3 in cornflakes. Rapid Communications in Mass Spectrometry, 19, 2021–2029.

    Article  CAS  Google Scholar 

  • Pearson, T. C., Wicklow, D. T., Maghirang, E. B., Xie, F., & Dowell, F. E. (2001). Detecting aflatoxin in single corn kernels by transmit and reflectance spectroscopy. Transactions-American Society of Agricultural Engineers, 44, 1247–1254.

    Article  CAS  Google Scholar 

  • Piot, O., Autran, J. C., & Manfait, M. (2002). Assessment of cereal quality by micro-Raman analysis of the grain molecular composition. Applied Spectroscopy, 56, 1132–1138.

    Article  CAS  Google Scholar 

  • Plieth, W., Dietz, H., Anders, A., Sandmann, G., Meixner, A., Weber, M., & Kneppe, H. (2005). Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy. Surface Science, 597, 119–126.

    Article  CAS  Google Scholar 

  • Robens, J., & Cardwell, K. (2003). The Costs of Mycotoxin Management to the USA: management of Aflatoxins in the United States. Toxin Reviews, 22, 139–152.

    Google Scholar 

  • Sandmann, G., Dietz, H., & Plieth, W. (2000). Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. Journal of Electroanalytical Chemistry, 491, 78–86.

    Article  CAS  Google Scholar 

  • Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998). Principles of instrumental analysis. Philadelphia, PA: Harcourt Brace College Publishers.

    Google Scholar 

  • Smith, E., & Dent, G. (2005). Introduction, basic theory and principles. In E. Smith & G. Dent (Eds.), Modern Raman spectroscopy-A practical approach (pp.1–21). West Sussex, UK: West Sussex:

  • Sohn, M., Himmelsbach, D. S., & Barton II, F. E. (2004). A comparative study of fourier transform raman and NIR spectroscopic methods for assessment of protein and apparent amylose in rice. Cereal Chemistry, 81, 429–433.

  • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22, 97–103.

    Article  Google Scholar 

  • Tang, H., Fang, D., Li, Q., Cao, P., Geng, J., Sui, T., Wang, X., Iqbal, J., & Du, Y. (2012). Determination of tricyclazole content in paddy rice by surface enhanced Raman spectroscopy. Journal of Food Science, 77, T105–T109.

    Article  CAS  Google Scholar 

  • Tu, A. T., Lee, J., & Milanovich, F. P. (1979). Laser-Raman spectroscopic study of cyclohexaamylose and related compounds; spectral analysis and structural implications. Carbohydrate Research, 76, 239–244.

    Article  CAS  Google Scholar 

  • Turner, N. W., Subrahmanyam, S., & Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica Chimica Acta, 632, 168–180.

    Article  CAS  Google Scholar 

  • Turner, P. C., Nikiema, P., & Wild, C. P. (1999). Fumonisin contamination of food: progress in development of biomarkers to better assess human health risks. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 443, 81–93.

    Article  CAS  Google Scholar 

  • Wang, X., Zhuang, J., Peng, Q., & Li, Y. (2005). A general strategy for nanocrystal synthesis. Nature, 437, 121–124.

    Article  CAS  Google Scholar 

  • Wang, Y., Lee, K., & Irudayaraj, J. (2010). Silver nanosphere SERS probes for sensitive identification of pathogens. The Journal of Physical Chemistry C, 114, 16122–16128.

    Article  CAS  Google Scholar 

  • Wellner, N., Georget, D. M., Parker, M. L., & Morris, V. J. (2011). In situ Raman microscopy of starch granule structures in wild type and ae mutant maize kernels. Starch-Starke, 63, 128–138.

    Article  CAS  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    Article  CAS  Google Scholar 

  • Wu, F. (2007). Measuring the economic impacts of Fusarium toxins in animal feeds. Animal Feed Science and Technology, 137, 363–374.

    Article  CAS  Google Scholar 

  • Xu, K., Abell, J., Zhao, Y., Qian, J., Brenneman, K., Meshik, X., Dutta, M., & Stroscio, M. (2012). Surface-enhanced Raman spectroscopy as a tool for characterizing nanostructures containing molecular components. In PHONONS 2012: XIV International Conference on Phonon Scattering in Condensed Matter, 1506, 57–61.

  • Young, J. C., & Lafontaine, P. (1993). Detection and characterization of fumonisin mycotoxins as their methyl esters by liquid chromatography/particle‐beam mass spectrometry. Rapid Communications in Mass Spectrometry, 7, 352–359.

    Article  CAS  Google Scholar 

  • Zeisel, D., Deckert, V., Zenobi, R., & Vo-Dinh, T. (1998). Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chemical Physics Letters, 283, 381–385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge partial financial support for this research by the Andersons Endowment administered through the Ohio Agricultural Research and Development Center of the Ohio State University and the National Corn Growers Association (Aflatoxin Mitigation Center of Excellence Research Program). The author also thanks Sara Williams and analytical chemists in Office of the Texas State Chemist for sharing LC-MS/MS data and their invaluable assistance and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KM., Herrman, T.J. Determination and Prediction of Fumonisin Contamination in Maize by Surface–Enhanced Raman Spectroscopy (SERS). Food Bioprocess Technol 9, 588–603 (2016). https://doi.org/10.1007/s11947-015-1654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1654-1

Keywords

Navigation