Skip to main content

Advertisement

Log in

Pressure Ohmic Thawing: a Feasible Approach for the Rapid Thawing of Frozen Meat and Its Effects on Quality Attributes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Rapid thawing has its significance to minimize the changes in quality attributes and microbial growth of frozen foods. This study investigated the potential of pressure ohmic thawing (POT) which utilize the synergy of high-pressure thawing and ohmic thawing. POT refers to the thawing of frozen foods using ohmic thawing (40 V/cm) under elevated pressures (200 MPa). Custom developed POT system was composed of flexible ohmic cell, pressure chamber, and electric field supplying system. Frozen beef samples in POT cells that were thawed with POT (40 V/cm, 200 MPa) were compared to control samples thawed using conventional, ohmic, and pressure-assisted thawing (PAT). POT had the shortest thawing time (0.8 min) followed by ohmic (5.5 min), PAT (11.5 min), and conventional thawing (43.3 min). POT and PAT applications decreased melting points of frozen samples from −1.6 °C at 0.1 MPa to −27 °C at 200 MPa. In POT, the in situ electrical conductivity increased (0.2–1.0 S/m), which combined with decreased melting points possibly enabled quicker thawing. POT minimized changes in shear force tests and peak forces close to that of raw sample as compared to controls. Our study demonstrates the benefits of POT applications for rapid thawing without affecting meat quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrosiadis, I., Theodorakakos, N., Georgakis, S., & Lekas, S. (1994). Influence of thawing methods on the quality of frozen meat and the drip loss. Fleischwirtschaft, 74, 284–287.

    CAS  Google Scholar 

  • Boles, J. A., & Swan, J. E. (2002). Meat and storage effects on processing characteristics of beef roasts. Meat Science, 62(1), 121–127.

    Article  CAS  Google Scholar 

  • Bozkurt, H., & İcier, F. (2012). Ohmic thawing of frozen beef cuts. Journal of Food Process Engineering, 35(1), 16–36.

    Article  Google Scholar 

  • Brewer, M. S., Zhu, L. G., Bidner, B., Meisinger, D. J., & McKeith, F. K. (2001). Measuring pork color: effects of bloom time, muscle, pH and relationship to instrumental parameter. Meat Science, 57(2), 169–176.

    Article  CAS  Google Scholar 

  • Calvelo, A. (1981). Recent studies on meat freezing. In R. Lawrie (Ed.), Developments in meat science (pp. 125–159). Englewood: Applied Science Publishers.

    Google Scholar 

  • Carlez, A., Veciana-Nogues, T., & Cheftel, J. C. (1995). Changes in colour and myoglobin of minced beef meat due to high pressure processing. LWT Food Science and Technology, 28(5), 528–538.

    Article  CAS  Google Scholar 

  • Cava, R., Ladero, L., González, S., Carrasco, A., & Ramírez, M. R. (2009). Effect of pressure and holding time on colour, protein and lipid oxidation of sliced dry-cured Iberian ham and loin during refrigerated storage. Innovative Food Science and Emerging Technologies, 10(1), 76–81.

    Article  CAS  Google Scholar 

  • Cheftel, J. C., & Culioli, J. (1997). Effects of high pressure on meat: a review. Meat Science, 46(3), 211–236.

    Article  CAS  Google Scholar 

  • Chevalier, D., Le Bail, A., Chourot, J., & Chantreau, P. (1999). High pressure thawing of fish (whiting): influence of the process parameters on drip losses. LWT Food Science and Technology, 32(1), 25–31.

    Article  CAS  Google Scholar 

  • Deuchi, T., & Hayashi, R. (1992). High pressure treatments at subzero temperature: application to preservation, rapid freezing and rapid thawing of foods. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High pressure and biotechnology (vol. 224, pp. 353–355). Montrouge: John Libbey Eurotext Ltd.

    Google Scholar 

  • Farouke, M. M., Wieliczko, K. J., & Merts, I. (2003). Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Science, 66(1), 171–179.

    Article  Google Scholar 

  • Fellows, P. (2000). Food processing technology : principles and practice (pp. 370). Florida: CRC press.

    Book  Google Scholar 

  • Fernández, P. P., Sanz, P. D., Molina-García, A. D., Otero, L., Guignon, B., & Vaudagna, S. R. (2007). Conventional freezing plus high pressure–low temperature treatment: physical properties, microbial quality and storage stability of beef meat. Meat Science, 77(4), 616–625.

    Article  Google Scholar 

  • Gambuteanu, C., Borda, D., & Alexe, P. (2013). The effect of freezing and thawing on technological properties of meat: review. Journal of Agroalimentary Processes and Technologies, 19(1), 88–93.

    Google Scholar 

  • Henderson, J. T. (1993). Ohmic thawing of frozen shrimp: preliminary technical and economic feasibility. Master Thesis. FL: University of Florida Gainesville.

    Google Scholar 

  • Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457.

    Article  CAS  Google Scholar 

  • Icier, F., Izzetoglu, G. T., Bozkurt, H., & Ober, A. (2010). Effects of ohmic thawing on histological and textural properties of beef cuts. Journal of Food Engineering, 99(3), 360–365.

    Article  Google Scholar 

  • Jones, P. L. (1992). Dielectric heating for food processing. Nutrition and Food Science, 92(2), 14–15.

    Article  Google Scholar 

  • Jung, S., Ghoul, M., & de Lamballerie-Anton, M. (2003). Influence of high pressure on the color and microbial quality of beef meat. LWT Food Science and Technology, 36(6), 625–631.

    Article  CAS  Google Scholar 

  • Kanda, Y., & Aoki, M. (1993). Development of pressure-shift freezing method. Part I: observation of ice crystals of frozen tofu. In R. Hayashi (Ed.), High pressure bioscience and food science (pp. 27–33). Kyoto: San-Ei Suppan.

    Google Scholar 

  • Karel, M., & Fennema, O. (1975). Principles of food science, part II. Physical principles of food preservation (pp. 208). New York: Marcel Dekker.

    Google Scholar 

  • Lagerstedt, Å., Enfält, L., Johansson, L., & Lundström, K. (2008). Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi. Meat Science, 80(2), 457–461.

    Article  CAS  Google Scholar 

  • Lemmon, E.W., Huber, M.L., & McLinden, M.O. (2010). NIST reference fluid thermodynamic and transport properties—REFPROP version 9.0, Boulder, Colorado: National Institute of Standards and Technology.

  • Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012a). Impact of freezing and thawing on the quality of meat: review. Meat Science, 91(2), 93–98.

    Article  Google Scholar 

  • Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012b). Meat quality comparison between fresh and frozen/thawed ostrich M. iliofibularis. Meat Science, 91(3), 364–368.

    Article  Google Scholar 

  • Li, B., & Sun, D. W. (2002). Novel methods for rapid freezing and thawing of foods—a review. Journal of Food Engineering, 54(3), 175–182.

    Article  Google Scholar 

  • Lui, Z., Xiong, Y., & Chen, J. (2010). Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle. Journal of Agricultural and Food Chemistry, 58(19), 10697–10704.

    Article  Google Scholar 

  • Macfarlane, J. J., McKenzie, I. J., & Turner, R. H. (1981). Pressure treatment of meat: effects on thermal transitions and shear values. Meat Science, 5(4), 307–317.

    Article  CAS  Google Scholar 

  • Makita, T. (1992). Applications of high pressure and thermophysical properties of water to biotechnology. Fluid Phase Equilibria, 76, 87–95.

    Article  CAS  Google Scholar 

  • Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121.

    Article  CAS  Google Scholar 

  • Mandava, R., Dilber, E., & Fernandez, J. (1995). Meat and meat products: use of high pressure treatment. Meat Focus International, 4(4), 147–151.

    Google Scholar 

  • Mandava, R., Fernandez, I., & Juillerat, M. (1994). Effect of high hydrostatic pressure on sausage batters. In Proceedings of 40th International Congress of Meat Science and Technology (pp. 1–6), The Hague, Netherlands.

  • Marcos, B., Aymerich, T., & Garriga, M. (2005). Evaluation of high pressure processing as an additional hurdle to control Listeria monocytogenes and Salmonella enterica in low acid fermented sausages. Jounal of Food Science, 70(7), M339–M344.

    Article  CAS  Google Scholar 

  • Marion, G. M., & Jakubowski, S. D. (2004). The compressibility of ice to 2.0 kbar. Cold Regions Science and Technology, 38(2–3), 211–218.

    Article  Google Scholar 

  • Massaux, C., Bera, F., Steyer, B., Sindic, M., & Deroanne, C. (1999a). High hydrostatic pressure freezing and thawing of pork meat: quality preservation, processing times and high pressures treatment advantages. In H. Ludwig (Ed.), Advances in high pressure bioscience and biotechnology (pp. 485–488). Berlin, Heidelberg: Springer-Vlg.

    Chapter  Google Scholar 

  • Massaux, C., Bera, F., Steyer, B., Sindic, M., & Deroanne, C. (1999b). High hydrostatic pressure effects on freezing and thawing processes of pork meat. In H. Ludwig (Ed.), Advances in high pressure bioscience and biotechnology (pp. 496–500). Berlin, Heidelberg: Springer-Vlg.

    Google Scholar 

  • McArdle, R., Marcos, B., Kerry, J. P., & Mullen, A. (2010). Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Science, 86(3), 629–634.

    Article  CAS  Google Scholar 

  • Min, S., Sastry, S. K., & Balasubramaniam, V. M. (2007). In situ electrical conductivity measurement of select liquid foods under hydrostatic pressure to 800 MPa. Journal of Food Engineering, 82(4), 489–497.

    Article  Google Scholar 

  • Min, S., Sastry, S. K., & Balasubramaniam, V. M. (2010). Compressibility and density of select liquid and solid foods under pressures up to 700 MPa. Journal of Food Engineering, 96(4), 568–574.

    Article  Google Scholar 

  • Murakami, T., Kimura, I., Yamagishi, T., Yamashita, M., Sugimoto, M., & Satake, M. (1992). Thawing of frozen fish by hydrostatic pressure. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), Proceedings of the first European seminar on high pressure and biotechnology (pp. 329–331). France: La Grande Motte.

    Google Scholar 

  • Ngapo, T. M., Babare, I. H., Reynolds, J., & Mawson, R. F. (1999). Freezing and thawing rate effects on drip loss from samples of pork. Meat Science, 53(3), 149–158.

    Article  CAS  Google Scholar 

  • Oillic, S., Lemoine, E., Gros, J. B., & Kondjoyan, A. (2011). Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath—effect of sample dimensions and prior freezing and ageing. Meat Science, 88(3), 338–346.

    Article  Google Scholar 

  • Okamoto, A., & Suzuki, A. (2001). Effects of high hydrostatic pressure-thawing on pork meat. Nippon Shokuhin Kagaku Kogaku Kaishi, 48(12), 891–898.

    Article  Google Scholar 

  • Park, S. H., Balasubramaniam, V. M., & Sasty, S. K. (2013). Estimating pressure induced changes in vegetable tissue using in situ electrical conductivity measurement and instrumental analysis. Journal of Food Engineering, 114(1), 47–56.

    Article  Google Scholar 

  • Park, S. H., Ryu, H. S., Hong, G. P., & Min, S. G. (2006). Physical properties of frozen pork thawed by high pressure assisted thawing process. Food Science and Technology International, 12(4), 347–352.

    Article  Google Scholar 

  • Patterson, K.Y., Duvall, M.L., Bhagwat, S., Howe, J.C., & Holden, J.M. (2011). USDA Nutrient Data Set for Retail Beef Cuts Release 2.0. Nutrient Data Laboratory (NDL), Agricultural Research Service, U.S. Department of Agriculture.

  • Rahelić, S., & Puać, S. (1985). Structure of beef longissimus dorsi muscle frozen at various temperatures: part 1—histological changes in muscle frozen at −10, −22, −33, −78, −115 and −196 °C. Meat Science, 14(2), 63–72.

    Article  Google Scholar 

  • Rieger, P.H. (1994). Electrochemistry (2nd ed., pp. 109–125). New York: Chapman and Hall.

  • Roberts, J. E., Field, R. A., Booren, A., & Meyers, T. G. (1976). Pressed tenderloin steak quality as influenced by anatomical location, storage time and internal temperature prior to cooking. Journal of Food Science, 41(5), 1107–1109.

    Article  Google Scholar 

  • Roberts, J. S., Balaban, M. O., Zimmerman, R., & Luzuriaga, D. (1998). Design and testing of prototype ohmic thawing unit. Computers and Electronics in Agriculture, 19(2), 211–222.

    Article  Google Scholar 

  • Rodríguez-Calleja, J. M., Cruz-Romero, M. C., O’Sullivan, M. G., García-López, M. L., & Kerry, J. P. (2012). High-pressure-based hurdle strategy to extend the shelf-life of fresh chicken breast fillets. Food Control, 25(2), 516–524.

    Article  Google Scholar 

  • Rouillé, J., Lebail, A., Ramaswamy, H. S., & Leclerc, L. (2002). High pressure thawing of fish and shellfish. Journal of Food Engineering, 53(1), 83–88.

    Article  Google Scholar 

  • Rubio, L. M. S., Méndez, M. R. D., & Huerta-Leidenz, N. (2007). Characterization of beef semimembranosus and adductor muscles from US and Mexican origin. Meat Science, 76(3), 438–443.

    Article  CAS  Google Scholar 

  • Samaranayake, C. P., & Sastry, S. K. (2005). Electrode and pH effects on electrochemical reactions during ohmic heating. Journal of Electroanalytical Chemistry, 577(1), 125–135.

    Article  CAS  Google Scholar 

  • Sastry, S. K. (2003). Ohmic heating. In D. R. Heldman (Ed.), Encyclopedia of agricultural, food, and biological engineering (pp. 707–711). New York: Marcel Dekker.

    Google Scholar 

  • Schubring, R., Meyer, C., Schlüter, O., Boguslawski, S., & Knorr, D. (2003). Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Science and Emerging Technologies, 4(3), 257–267.

    Article  Google Scholar 

  • Shanks, B. C., Wulf, D. M., & Maddock, R. J. (2002). Technical note: the effect of freezing on Warner–Bratzler shear force values of beef longissimus steaks across several post mortem aging periods. Journal of Animal Science, 80(8), 2122–2125.

    CAS  Google Scholar 

  • Shigehisa, T., Ohmori, T., Saito, A., Taji, S., & Hayashi, R. (1991). Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. International Journal of Food Microbiology, 12(2–3), 207–216.

    Article  CAS  Google Scholar 

  • Shubring, R., Meyer, C., Schlüter, O., Boguslawski, S., & Knorr, D. (2003). Impact of high pressure assisted thawing on the quality of fillets from various species. Innovative Food Science and Emerging Technologies, 4(3), 257–267.

    Article  Google Scholar 

  • Sriket, P., Benjakul, S., Visessanguan, W., & Kijroongrojana, K. (2007). Comparative studies on the effect of the freeze–thawing process on the physicochemical properties and microstructures of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle. Food Chemistry, 104(1), 113–121.

    Article  CAS  Google Scholar 

  • Tironi, V., de Lamballerie, M., & Le-Bail, A. (2010). Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innovative Food Science and Emerging Technologies, 11(4), 565–573.

    Article  CAS  Google Scholar 

  • Tsvetkov, T., Tsonev, L., Meranzov, N., & Minkov, I. (1985). Functional changes in mitochondrial properties as a result of their membrane cryodestruction. II. Influence of Freezing and Thawing on ATP Complex Activity of Intact Liver Mitochondria. Cryobiology, 22(2), 111–118.

    Article  CAS  Google Scholar 

  • Tsvetkov, T., Tsonev, L., & Minkov, I. (1986). A quantitative evaluation of the extent of inner mitochondrial membrane destruction after freezing–thawing based on functional studies. Cryobiology, 23(5), 433–439.

    Article  CAS  Google Scholar 

  • Tzedakis, T., Basseguy, R., & Comtat, M. (1999). Voltammetric and coulometric techniques to estimate the electrochemical reaction rate during ohmic sterilization. Journal of Applied Electrochemistry, 29(7), 821–828.

    Article  CAS  Google Scholar 

  • Urrutia Benet, G., Schlüter, O., & Knorr, D. (2004). High pressure–low temperature processing. Suggested definitions and terminology. Innovative Food Science and Emerging Technologies, 5(4), 413–427.

    Article  CAS  Google Scholar 

  • Uyar, R., Faye Bedane, T., Erdogdu, F., Koray Palazoglu, T., Farag, K. W., & Marra, F. (2015). Radio-frequency thawing of food products—a computational study. Journal of Food Engineering, 146, 163–171.

    Article  Google Scholar 

  • Vaudagna, S. R., Gonzalez, C. B., Guignon, B., Aparicio, C., Otero, L., & Sanz, P. D. (2012). The effects of high hydrostatic pressure at subzero temperature on the quality of ready-to-eat cured beef carpaccio. Meat Science, 92(4), 575–581.

    Article  CAS  Google Scholar 

  • Vorst, K. L., Clarke, R. H., Allison, C. P., & Booren, A. M. (2004). A research note on radio frequency transponder effects on bloom of beef muscle. Meat Science, 67(1), 179–182.

    Article  CAS  Google Scholar 

  • Wagner, W., Saul, A. B., & Pruß, A. (1994). International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. Journal of Physical and Chemical Reference Data, 23(3), 515–527.

    Article  CAS  Google Scholar 

  • Wheeler, T. L., Miller, R. K., Savell, J. W., & Cross, H. R. (1990). Palatability of chilled and frozen beef steaks. Journal of Food Science, 55(2), 301–304.

    Article  Google Scholar 

  • Zhao, Y., Flores, R., & Olson, D. (1998). High hydrostatic pressure effects on rapid thawing of frozen beef. Journal of Food Science, 63(2), 272–275.

    Article  CAS  Google Scholar 

  • Zhu, S., Ramaswamy, H. S., & Simpson, B. K. (2004). Effect of high-pressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. LWT Food Science and Technology, 37(3), 291–299.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Konkuk University, Research Grant 2013-A091-0017. The authors wish to thank Dr. VM Balasubramaniam at the Department of Food Science and Technology, The Ohio State University for proving the high-pressure equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hee Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, SG., Hong, GP., Chun, JY. et al. Pressure Ohmic Thawing: a Feasible Approach for the Rapid Thawing of Frozen Meat and Its Effects on Quality Attributes. Food Bioprocess Technol 9, 564–575 (2016). https://doi.org/10.1007/s11947-015-1652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1652-3

Keywords

Navigation