Skip to main content
Log in

Production of Whey Protein-Based Aggregates Under Ohmic Heating

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm−1). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm−1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anema, S. G., & Li, Y. M. (2003). Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size. Journal of Dairy Research, 70(1), 73–83. doi:10.1017/S0022029902005903.

    Article  CAS  Google Scholar 

  • Augustin, M. A. (2003). The role of microencapsulation in the development of functional dairy foods. Australian Journal of Dairy Technology, 58(2), 156–160.

    CAS  Google Scholar 

  • Bhopatkar, D., Hamaker, B. R., & Campanella, O. H. (2012). Micro to macro level structures of food materials. In B. Bhandari, & Y. H. Roos (Eds.), Food materials science and engineering: Wiley-Blackwell.

  • Bolder, S. G., Hendrickx, H., Sagis, L. M. C., & van der Linden, E. (2006). Fibril assemblies in aqueous whey protein mixtures. Journal of Agricultural and Food Chemistry, 54(12), 4229–4234. doi:10.1021/Jf060606s.

    Article  CAS  Google Scholar 

  • Bolder, S. G., Vasbinder, A. J., Sagis, L. M. C., & van der Linden, E. (2007). Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation. International Dairy Journal, 17(7), 846–853. doi:10.1016/j. idariyj.2006.10.002.

  • Bryant, C. M., & McClements, D. J. (1998). Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Science & Technology, 9(4), 143–151. doi:10.1016/S0924-2244(98)00031-4..

    Article  CAS  Google Scholar 

  • Chalker, J. M., Gunnoo, S. B., Boutureira, O., Gerstberger, S. C., Fernandez-Gonzalez, M., Bernardes, G. J. L., et al. (2011). Methods for converting cysteine to dehydroalanine on peptides and proteins. Chemical Science, 2(9), 1666–1676. doi:10.1039/c1sc00185j.

    Article  CAS  Google Scholar 

  • Chen, L., & Subirade, M. (2007). Effect of preparation conditions on the nutrient release properties of alginate-whey protein granular microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 354–362. doi:10.1016/j.ejpb.2006.10.012 [Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  • Chen, L. Y., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17(5), 272–283. doi:10.1016/j.tifs.2005.12.011.

    Article  CAS  Google Scholar 

  • Chimon, S., Shaibat, M. A., Jones, C. R., Calero, D. C., Aizezi, B., & Ishii, Y. (2007). Evidence of fibril-like [beta]-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s [beta]-amyloid. [10.1038/nsmb1345]. Nat Struct Mol Biol, 14(12), 1157–1164 http://www.nature.com/nsmb/journal/v14/n12/suppinfo/nsmb1345_S1.html.

    Article  CAS  Google Scholar 

  • Cornacchia, L., Forquenot de la Fortelle, C., & Venema, P. (2014). Heat-induced aggregation of whey proteins in aqueous solutions below their isoelectric point. Journal of Agricultural and Food Chemistry, 62(3), 733–741. doi:10.1021/jf404456q.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., & Banks, J. M. (1991). The formation of complexes between serum proteins and fat globules during heating of whole milk. Milchwissenschaft - Milk Science International, 46, 75–78.

    CAS  Google Scholar 

  • De Alwis, A. A. P., & Fryer, P. J. (1990). A finite-element analysis of heat generation and transfer during ohmic heating of food. Chemical Engineering Science, 45(6), 1547–1559. doi:10.1016/0009-2509(90)80006-z.

    Article  Google Scholar 

  • de Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science, 81(3), 597–608. doi:10.3168/jds.S0022-0302(98)75613-9..

    Article  Google Scholar 

  • Dissanayake, M., Ramchandran, L., Donkor, O. N., & Vasiljevic, T. (2013). Denaturation of whey proteins as a function of heat, pH and protein concentration. International Dairy Journal, 31(2), 93–99. doi:10.1016/j.idairyj.2013.02.002..

    Article  CAS  Google Scholar 

  • Du, W.-J., Guo, J.-J., Gao, M.-T., Hu, S.-Q., Dong, X.-Y., Han, Y.-F., et al. (2015). Brazilin inhibits amyloid [bgr]-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. [Article]. Sci. Rep., 5, doi:10.1038/srep07992 http://www.nature.com/srep/2015/150123/srep07992/abs/srep07992.html#supplementary-information.

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. doi:10.1016/0003-9861(59)90090-6..

    Article  CAS  Google Scholar 

  • Foegeding, E. A. (2006). Food biophysics of protein gels: a challenge of nano and macroscopic proportions. Food Biophysics, 1(1), 41–50. doi:10.1007/s11483-005-9003-y.

    Article  Google Scholar 

  • Gontard, L. C., Ozkaya, D., & Dunin-Borkowski, R. E. (2011). A simple algorithm for measuring particle size distributions on an uneven background from TEM images. Ultramicroscopy, 111(2), 101–106. doi:10.1016/j.ultramic.2010.10.011.

    Article  CAS  Google Scholar 

  • Gordon, L., & Pilosof, A. M. R. (2010). Application of high-intensity ultrasounds to control the size of whey proteins particles. Food Biophysics, 5(3), 203–210. doi:10.1007/s11483-010-9161-4.

    Article  Google Scholar 

  • Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering, 83(1), 31–40. doi:10.1016/j.jfoodeng.2006.11.001.

    Article  CAS  Google Scholar 

  • Hamada, D., & Dobson, C. M. (2002). A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Science, 11(10), 2417–2426. doi:10.1110/ps.0217702.

    Article  CAS  Google Scholar 

  • Hoffmann, M. A. M., Roefs, S. P. F. M., Verheul, M., VanMil, P. J. J. M., & DeKruif, K. G. (1996). Aggregation of beta-lactoglobulin studied by in situ light scattering. Journal of Dairy Research, 63(3), 423–440.

    Article  Google Scholar 

  • Ikeda, S., & Morris, V. J. (2002). Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules, 3(2), 382–389. doi:10.1021/bm0156429.

    Article  CAS  Google Scholar 

  • Jensen, T., Dolatshahi-Pirouz, A., Foss, M., Baas, J., Lovmand, J., Duch, M., et al. (2010). Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces. Colloids and Surfaces B-Biointerfaces, 75(1), 186–193. doi:10.1016/j.colsurfb.2009.08.029.

    Article  CAS  Google Scholar 

  • Kavanagh, G. M., Clark, A. H., & Ross-Murphy, S. B. (2000). Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH β-lactoglobulin gels. Int J Biol Macromol, 28(1), 41–50. doi:10.1016/S0141-8130(00)00144-6..

    Article  CAS  Google Scholar 

  • Langton, M., & Hermansson, A. M. (1992). Fine-stranded and particulate gels of beta-lactoglobulin and whey-protein at varying pH. Food Hydrocolloids, 5(6), 523–539.

    Article  CAS  Google Scholar 

  • Law, A. J. R., & Leaver, J. (2000). Effect of pH on the thermal denaturation of whey proteins in milk. Journal of Agricultural and Food Chemistry, 48(3), 672–679.

    Article  CAS  Google Scholar 

  • Lefevre, T., & Subirade, M. (2000). Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels. Biopolymers, 54(7), 578–586. doi:10.1002/1097-0282(200012)54:7<578::Aid-Bip100>3.0.Co;2-2.

    Article  CAS  Google Scholar 

  • Lefevre, T., Subirade, M., & Pezolet, M. (2005). Molecular description of the formation and structure of plasticized globular protein films. Biomacromolecules, 6(6), 3209–3219. doi:10.1021/bm050540u Research Support, Non-U.S. Gov’t].

  • Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science, 15(1–2), 73–83. doi:10.1016/j.cocis.2009.11.002.

    Article  CAS  Google Scholar 

  • Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M. E., & Xavier Malcata, F. (2007). Bovine whey proteins—overview on their main biological properties. Food Research International, 40(10), 1197–1211. doi:10.1016/j.foodres.2007.07.005.

    Article  CAS  Google Scholar 

  • Mezzenga, R., & Fischer, P. (2013). The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Reports on Progress in Physics, 76(4). doi:10.1088/0034-4885/76/4/046601.

  • Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962. doi:10.1016/j.foodhyd.2011.02.006.

    Article  CAS  Google Scholar 

  • Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18(4), 249–256. doi:10.1016/j.cocis.2013.03.001.

    Article  CAS  Google Scholar 

  • Nicorescu, I., Loisel, C., Vial, C., Riaublanc, A., Djelveh, G., Cuvelier, G., et al. (2008). Combined effect of dynamic heat treatment and ionic strength on denaturation and aggregation of whey proteins—part I. Food Research International, 41(7), 707–713. doi:10.1016/j.foodres.2008.05.003.

    Article  CAS  Google Scholar 

  • Nobbmann, U., & Morfesis, A. (2009). Light scattering and nanoparticles. Materials Today, 12(5), 52–54. doi:10.1016/S1369-7021(09)70164-6.

    Article  CAS  Google Scholar 

  • Patrick, P. S., & Swaisgood, H. E. (1976). Sulfhydryl and disulfide groups in skim milk as affected by direct ultra-high-temperature heating and subsequent storage. Journal of Dairy Science, 59(4), 594–600. doi:10.3168/jds.S0022-0302(76)84246-4.

    Article  CAS  Google Scholar 

  • Pereira, R. N., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). Effects of electric fields on protein unfolding and aggregation: influence on edible films formation. Biomacromolecules, 11(11), 2912–2918. doi:10.1021/bm100681a.

    Article  CAS  Google Scholar 

  • Pereira, R. N., Teixeira, J. A., & Vicente, A. A. (2011). Exploring the denaturation of whey proteins upon application of moderate electric fields: a kinetic and thermodynamic study. Journal of Agricultural and Food Chemistry, 59(21), 11589–11597. doi:10.1021/Jf201727s.

    Article  CAS  Google Scholar 

  • Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2013). Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules, 14(6), 1980–1989. doi:10.1021/bm400347d.

    Article  CAS  Google Scholar 

  • Prabakaran, S., & Damodaran, S. (1997). Thermal unfolding of beta-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation. Journal of Agricultural and Food Chemistry, 45(11), 4303–4308. doi:10.1021/Jf970269a.

    Article  CAS  Google Scholar 

  • Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64, 49–60. doi:10.1016/j.addr.2012.09.024.

    Article  Google Scholar 

  • Ramos, O. L., Pereira, R. N., Rodrigues, R., Teixeira, J. A., Vicente, A. A., & Xavier Malcata, F. (2014). Physical effects upon whey protein aggregation for nano-coating production. Food Research International, 66(0), 344–355. doi:10.1016/j.foodres.2014.09.036.

    Article  CAS  Google Scholar 

  • Rodrigues, R. M., Martins, A. J., Ramos, O. L., Malcata, F. X., Teixeira, J. A., Vicente, A. A., et al. (2015). ). Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocolloids, 43(0), 329–339. doi:10.1016/j.foodhyd.2014.06.002.

    Article  CAS  Google Scholar 

  • Sava, N., Van der Plancken, I., Claeys, W., & Hendrickx, M. (2005). The kinetics of heat-induced structural changes of beta-lactoglobulin. Journal of Dairy Science, 88(5), 1646–1653. doi:10.3168/jds.S0022-0302(05)72836-8 [Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  • Schmitt, C., Bovay, C., Vuilliomenet, A. M., Rouvet, M., Bovetto, L., Barbar, R., et al. (2009). Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir, 25(14), 7899–7909. doi:10.1021/la900501n.

    Article  CAS  Google Scholar 

  • Schuster, E., Hermansson, A. M., Ohgren, C., Rudemo, M., & Loren, N. (2014). Interactions and diffusion in fine-stranded beta-lactoglobulin gels determined via FRAP and binding. Biophysical Journal, 106(1), 253–262. doi:10.1016/j.bpj.2013.11.2959.

    Article  CAS  Google Scholar 

  • Simon M. Loveday, Rao M. A. & Singh, H. (2012). Food protein nanoparticles: formation, properties and applications. In: Bhesh Bhandari, & Yrjö H. Roos (Eds.), Food materials science and engineering (1.Edition ed.): Wiley-Blackwell

  • Soos, M., Lattuada, M., & Sefcik, J. (2009). Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering. Journal of Physical Chemistry B, 113(45), 14962–14970. doi:10.1021/Jp907284t.

    Article  CAS  Google Scholar 

  • Stading, M., & Hermansson, A.-M. (1990). Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids, 4(2), 121–135. doi:10.1016/S0268-005X(09)80013-1.

    Article  CAS  Google Scholar 

  • Stading, M., & Hermansson, A.-M. (1991). Large deformation properties of β-lactoglobulin gel structures. Food Hydrocolloids, 5(4), 339–352. doi:10.1016/S0268-005X(09)80046-5.

    Article  CAS  Google Scholar 

  • Stading, M., Langton, M., & Hermansson, A.-M. (1992). Inhomogeneous fine-stranded β-lactoglobulin gels. Food Hydrocolloids, 6(5), 455–470. doi:10.1016/S0268-005X(09)80031-3.

    Article  CAS  Google Scholar 

  • Stanciuc, N., Dumitrascu, L., Ardelean, A., Stanciu, S., & Rapeanu, G. (2012). A kinetic study on the heat-induced changes of whey proteins concentrate at two pH values. Food and Bioprocess Technology, 5(6), 2160–2171. doi:10.1007/s11947-011-0590-y.

    Article  CAS  Google Scholar 

  • Stokes, J. R. (2012). Food biopolymer gels, microgel and nanogel structures, formation and rheology. In: Bhesh Bhandari, & Yrjö H. Roos (Eds.), Food materials science and engineering (1.Edition ed.): Wiley-Blackwell

  • Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 35, 36–50. doi:10.1016/j.foodhyd.2013.07.023.

    Article  CAS  Google Scholar 

  • Tuan, P. X., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2011). On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands. Langmuir, 27(24), 15092–15101. doi:10.1021/La203357p.

    Article  Google Scholar 

  • Verheul, M., Roefs, S. P. F. M., & de Kruif, K. G. (1998). Kinetics of heat-induced aggregation of beta-lactoglobulin. Journal of Agricultural and Food Chemistry, 46(3), 896–903.

    Article  CAS  Google Scholar 

  • Ziegler, J., Viehrig, C., Geimer, S., Rosch, P., & Schwarzinger, S. (2006). Putative aggregation initiation sites in prion protein. FEBS Letters, 580(8), 2033–2040. doi:10.1016/j.febslet.2006.03.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Portuguese Foundation for Science and Technology (FCT) strategic project UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and the project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes” REF. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors would like to acknowledge Rui Fernandes from the Institute for Molecular and Cell Biology (IBMC), University of Porto, for the assistance in taking the TEM pictures. The authors Ricardo N. Pereira and Oscar L. Ramos also acknowledge FCT for their post-doctoral grants with references SFRH/BPD/81887/2011 and SFRH/BPD/80766/2011, respectively.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo N. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R.N., Rodrigues, R.M., Ramos, Ó.L. et al. Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food Bioprocess Technol 9, 576–587 (2016). https://doi.org/10.1007/s11947-015-1651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1651-4

Keywords

Navigation