Skip to main content

Characterization of Valuable Compounds from Winter Melon (Benincasa hispida (Thunb.) Cogn.) Seeds Using Supercritical Carbon Dioxide Extraction Combined with Pressure Swing Technique

Abstract

In this study, we describe the extraction of different valuable compounds from winter melon seeds using supercritical carbon dioxide extraction combined with pressure swing technique (SCE-PST). The effects of the extraction variables, namely pressure, holding time (HT), and continuous extraction time (CT), were optimized by response surface methodology (RSM) to maximize the crude extraction yield (CEY). The optimal conditions were at pressure of 181.35 bar, HT of 9.93 min, and CT of 50.14 min. Under these conditions, the experimental CEY was 235.70 ± 0.11 mg g−1 with a relatively strong antioxidant activity (64.42 ± 0.21 % inhibition of DPPH· radicals, 67.36 ± 0.34 % inhibition of ABTS·+ radicals) and considerable amount of phenolic compounds (42.77 ± 0.40 mg gallic acid equivalent/g extract). The high-performance liquid chromatography (HPLC) analysis revealed that the bioactive phenolic compounds increased significantly using PST (p < 0.05), where gallic acid had the highest concentration (0.688 ± 0.34 mg g−1). The extract obtained using optimal SCE-PST conditions contained more than 83.65 % total unsaturated fatty acids (UFAs) and linoleic acid accounted for 67.33 ± 0.22 % in the total extract. From the results, the SCE efficiency in terms of extract quantity and quality has been enhanced significantly applying PST. Finally, the results were compared with previous published findings using supercritical carbon dioxide, ultrasound-assisted, and Soxhlet extraction. It was found that higher CEY could be achieved using Soxhlet extraction even through the quality of SCE-PST extracts in terms of antioxidant activity and phenolic compounds was better.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Al-Khalifa, A. S. (1996). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44, 964–966.

    Article  CAS  Google Scholar 

  • Al-Naqeeb, G., Ismail, M., & Al-Zubairi, A. S. (2009). Fatty acid profile, α-tocopherol content and total antioxidant activity of oil extracted from Nigella sativa seeds. International Journal of Pharmacology, 5, 244–250.

    Article  CAS  Google Scholar 

  • Bas, D., & Boyaci, I. H. (2007). Modeling and optimization I, usability of response surface methodology. Journal of Food Engineering, 78, 836–845.

    Article  CAS  Google Scholar 

  • Bhattacharjee, P., Singhal, R. S., & Tiwari, S. R. (2007). Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79, 892–898.

    Article  CAS  Google Scholar 

  • Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 7, 11748–11762.

    Article  CAS  Google Scholar 

  • Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2013). Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules, 18, 997–1014.

    Article  CAS  Google Scholar 

  • Cao, X., & Ito, Y. (2003). Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. Journal of Chromatography A, 1021, 117–124.

    Article  CAS  Google Scholar 

  • Ensminger, M. E., Oldfield, J. E., & Heinemann, W. W. (1990). Feeds and nutrition. 2nd edition. Ensminger, Clovis

  • Kazzazi, H., Rezaei, K., Ghotb-Sharif, S. J., Emam-Djomeh, Z., & Yamini, Y. (2007). Supercritical fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chemistry, 105, 805–811.

    Article  CAS  Google Scholar 

  • Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119, 851–858.

    Article  CAS  Google Scholar 

  • Lee, W. Y., Cho, Y. J., Oh, S. L., Park, J. H., Cha, W. S., Jung, J. Y., & Choi, Y. H. (2000). Extraction of grape seed oil by supercritical CO2 and ethanol modifier. Food Science and Biotechnology, 9, 174–178.

    Google Scholar 

  • Liu, G., Xu, X., Hao, Q., & Gao, Y. (2009). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT--Food Science and Technology, 42, 1491–1495.

    Article  CAS  Google Scholar 

  • Liyana-Pathirana, C., & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93, 47–56.

    Article  CAS  Google Scholar 

  • Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, S. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88, 319–326.

    Article  CAS  Google Scholar 

  • Luengthanaphol, S., Mongkholkhajornsilp, D., Douglas, S., Douglas, P. L., Pengsopa, L., & Pongamphai, S. (2004). Extraction of antioxidants from sweet Thai tamarind seed coat—preliminary experiments. Journal of Food Engineering, 63, 247–252.

    Article  Google Scholar 

  • Machmudah, S., Kawahito, Y., Sasaki, M., & Goto, M. (2007). Supercritical CO2 extraction of rosehip seed oil: fatty acids composition and process optimization. Journal of Supercritical Fluids, 41, 421–428.

    Article  CAS  Google Scholar 

  • Mandana, B., Russly, A. R., Farah, S. T., Noranizan, M. A., Zaidul, I. S., & Ali, G. (2012). Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. International Food Research Journal, 19, 229–234.

    CAS  Google Scholar 

  • Mariod, A. A., Ahmed, Y. M., Matthäus, B., Khaleel, G., Siddig, A., Gabra, A. M., & Abdelwahab, S. I. (2009). A comparative study of the properties of six Sudanese cucurbit seeds and seed oils. Journal of the American Oil Chemists' Society, 86, 1181–1188.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2008). Supercritical fluid extraction of nutraceuticals and bioactive compounds. New York: United States of America, CRC Press.

    Google Scholar 

  • Mingyu, D., Mingzhang, L., Qinghong, Y., Weiming, F., Jianxiang, X., & Weiming, X. (1995). A study on Benincasa hispida contents effective for protection of kidney. Jiangsu Journal of Agricultural Sciences, 11, 46–52.

    Google Scholar 

  • Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil on flavour release from diluted orange beverage emulsion. Food Chemistry, 107, 1161–1172.

    CAS  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York: Wiley.

    Google Scholar 

  • Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Che Man, Y. B. (2009). Physicochemical properties and bioactive compounds of selected seed oils. LWT - Food Science and Technology, 42, 1396–1403.

    Article  CAS  Google Scholar 

  • Oliveira, R., Rodrigues, M. F., & Bernardo-Gil, M. G. (2002). Characterization and supercritical carbon dioxide extraction of walnut oil. Journal of the American Oil Chemists' Society, 79, 225–230.

    Article  CAS  Google Scholar 

  • Rezaei, K., & Temelli, F. (2000). Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO2. Journal of Supercritical Fluids, 17, 35–44.

    Article  CAS  Google Scholar 

  • Rezzoug, S. A., Boutekedjiret, C., & Allaf, K. (2005). Optimization of operating conditions of rosemary essential oil extraction by a fast controlled pressure drop process using response surface methodology. Journal of Food Engineering, 71, 9–17.

    Article  Google Scholar 

  • Salto, S. (1995). Research activities on supercritical fluid science and technology in Japan—a review. Journal of Supercritical Fluids, 8, 177–204.

    Article  Google Scholar 

  • Sánchez-Vicente, Y., Cabañas, A., Renuncio, J. A. R., & Pando, C. (2009). Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. Journal of Supercritical Fluids, 49, 167–173.

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Smith, R. L., Jr., Malaluan, R. M., Setianto, W. B., Inomata, H., & Arai, K. (2003). Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide. Bioresource Technology, 88, 1–7.

    Article  CAS  Google Scholar 

  • Stévigny, C., Rolle, L., Valentini, N., & Zeppa, G. (2007). Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. Journal of the Science of Food and Agriculture, 87, 2817–2822.

    Article  CAS  Google Scholar 

  • Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., & Shotipruk, A. (2008). Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 99, 3110–3115.

    Article  CAS  Google Scholar 

  • Triveni, R., Shamala, T. R., & Rastogi, N. K. (2001). Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 36, 787–795.

    Article  CAS  Google Scholar 

  • Valcárcel, M., & Tena, M. T. (1997). Applications of supercritical fluid extraction in food analysis. Fresenius Journal of Analytical Chemistry, 358, 561–573.

    Article  Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300–312.

    Article  CAS  Google Scholar 

  • Wang, L., Yang, B., Du, X., & Yi, C. (2008). Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chemistry, 108, 737–741.

    Article  CAS  Google Scholar 

  • Wei, Z. J., Liao, M. A., Zhang, H. X., Liu, J., & Jiang, S. H. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.

    Article  CAS  Google Scholar 

  • Wilkinson, P., Leach, C., Ahsing, E. E., Hussain, N., Miller, G. J., & Millward, D. J. (2005). Influence of α-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with an atherogenic lipoprotein phenotype. Atherosclerosis, 181, 115–124.

    Article  CAS  Google Scholar 

  • Zaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Sato, Y., & Smith, R. L., Jr. (2007). Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering, 81, 419–428.

    Article  CAS  Google Scholar 

  • Zaini, N. A. M., Anwar, F., Hamid, A. A., & Saari, N. (2011). Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Research International, 44, 2368–2376.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandana Bimakr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bimakr, M., Rahman, R.A., Ganjloo, A. et al. Characterization of Valuable Compounds from Winter Melon (Benincasa hispida (Thunb.) Cogn.) Seeds Using Supercritical Carbon Dioxide Extraction Combined with Pressure Swing Technique. Food Bioprocess Technol 9, 396–406 (2016). https://doi.org/10.1007/s11947-015-1636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1636-3

Keywords

  • Winter melon
  • SCE-PST
  • Antioxidant activity
  • Phenolic compounds
  • HPLC
  • UFA