Food and Bioprocess Technology

, Volume 9, Issue 2, pp 298–307 | Cite as

Development of an Active Packaging Film Based on a Methylcellulose Coating Containing Murta (Ugni molinae Turcz) Leaf Extract

  • Carolin Hauser
  • Angela Peñaloza
  • Abél Guarda
  • Maria José Galotto
  • Julio E. Bruna
  • Francisco J. Rodríguez
Original Paper


A new active packaging film based on murta leaf extract was elaborated. The extract was incorporated into a methylcellulose layer which was coated on a low-density polyethylene (LDPE) film. Its antioxidant effectivity, antimicrobial activity, and physicochemical properties were evaluated. The active film was able to keep its antimicrobial and antioxidant properties for at least 60 days. During this time, the growth of Listeria (L.) innocua was reduced by 2 log cycles and free radical formation could be inhibited by about 90 % for films stored under light and dark conditions. The active coating on the LDPE film did not affect the thermal and water vapor transmission properties; however, slight changes in the mechanical, color, and optical properties were observed. Finally, a sensory analysis showed that active coating did not change the flavor and odor properties of a fatty food packed inside the active material. This suggests that this active packaging film could be used to extend the shelf-life of packaged food.


Active packaging Antimicrobial Antioxidant Murta Methylcellulose Coating 



The authors thank the Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia of Conysit (Project FB0807), the Bayerische Forschungsstiftung (PIZ-189-11), and the Deutsche Forschungsgemeinschaft (International Cooperation HA 6954/1-1) for enabling these studies by their financial support.


  1. ASTM International (1995). ASTM F1249-90, Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensorGoogle Scholar
  2. ASTM International (2011). ASTM E1870, Standard test method for odor and taste transfer from polymeric packaging film.Google Scholar
  3. ASTM International (2012). ASTM D822, Standard test method for tensile properties of thin plastic sheetingGoogle Scholar
  4. Ayana, B., & Turhan, K. N. (2009). Use of antimicrobial methylcellulose films to control Staphylococcus aureus during storage of Kasar cheese. Packaging Technology and Science, 22, 461–469.CrossRefGoogle Scholar
  5. Bifani, V., Ramírez, C., Ihl, M., Rubilar, M., García, A., & Zaritzky, N. (2007). Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT - Food Science and Technology, 40, 1473–1481.CrossRefGoogle Scholar
  6. Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of chitosan coating solution on ‘Fuji’ apple skin. Journal of Food Science, 67, 2668–2672.CrossRefGoogle Scholar
  7. Delporte, C., Backhouse, N., Inostroza, V., Aguirre, M. C., Peredo, N., Silva, X., et al. (2007). Analgesic activity of Ugni molinae (murtilla) in mice models of acute pain. Journal of Ethnopharmacology, 112(1), 162–165.CrossRefGoogle Scholar
  8. EFSA. (2014). The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA Journal, 12, 3547.Google Scholar
  9. European Commission. (2009). Commission Regulation No. 450/2009/EC on active and intelligent materials and articles intended to come into contact with food. Official Journal of the European Union, 3, 9.Google Scholar
  10. Farris, S., & Piergiovanni, L. (2012). Emerging coating technologies for food and beverage packaging materials. In K. L. Yam & D. S. Lee (Eds.), Emerging food packaging technologies. Cambridge: Woodhead Publishing.Google Scholar
  11. FDA, U.S. Food and Drug Administration (2014). GRAS Notices, 2014. Database of selected committee on GRAS substances reviews. Resource document. Accessed 11 August 2014.
  12. Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17, 1866–1875.CrossRefGoogle Scholar
  13. Gall, L. Messen, Kontrollieren, Rezeptieren. Farbtoleranzen, 2009. Resource document. Accessed 1st. August 2015
  14. Galotto, M. J., Valenzuela, X., Rodriguez, F., Bruna, J., & Guarda, A. (2012). Evaluation of the effectiveness of a new antimicrobial active packaging for fresh Atlantic salmon (Salmo salar L.) shelf life. Packaging Technology and Science, 25, 363–372.CrossRefGoogle Scholar
  15. Grower, J. L., Cooksey, K., & Getty, K. (2004). Release of nisin from methylcellulose-hydroxypropyl methylcellulose film formed on low-density polyethylene film. Journal of Food Science, 69, 107–111.Google Scholar
  16. Gutiérrez, L., Escudero, A., Batlle, R., & Nerín, C. (2009). Effect of mixed antimicrobial agents and flavors in active packaging films. Journal of Agricultural and Food Chemistry, 57, 8564–8571.CrossRefGoogle Scholar
  17. Gutiérrez, M. Q., Echeverría, I., Ihl, M., Bifani, V., & Mauri, A. N. (2012). Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydrate Polymers, 87, 1495–1502.CrossRefGoogle Scholar
  18. Hauser, C., Peñaloza, A., Rodríguez, F., Guarda, A., & Galotto, M. J. (2014). Promising antimicrobial and antioxidant extracts of Murta leaves (Ugni molinae Turcz): shelf-life extension and food safety. Food Packaging and Shelf Life, 1(1), 77–85.CrossRefGoogle Scholar
  19. Hauser, C., & Wunderlich, J. (2011). Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Science, 1, 197–202.CrossRefGoogle Scholar
  20. Hellerich, W., Harsch, G., & Haenle, S. (2004). Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte. Munich: Hanser-Verlag.Google Scholar
  21. Japanese Standards Association. (2000). JIS Z 2801:2000(E). Antimicrobial products—test for antimicrobial activity and efficacyGoogle Scholar
  22. Joerger, R. D. (2007). Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packaging Technology and Science, 20(4), 231–273.CrossRefGoogle Scholar
  23. Keary, C. M. (2001). Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydrate Polymers, 45, 293–303.CrossRefGoogle Scholar
  24. Kibar, E. A. A., & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering, 114, 123–131.CrossRefGoogle Scholar
  25. Krishnawaswamy, R. K., Yang, Q., Fernandez-Ballester, L., & Kornfield, J. A. (2008). Effects of the distribution of short chain branches on crystallization kinetics and mechanical properties of high-density polyethylene. Macromolecules, 41, 1693–1704.CrossRefGoogle Scholar
  26. Lee, D. S. (2005). Packaging containing natural antimicrobial or antioxidative agents. In J. H. Han (Ed.), Innovations in food packaging. London: Elsevier Science & Technology Books.Google Scholar
  27. Norma Chilena (1997). NCh2387.Of97. Papeles y cartones-Atmósferas normales para preacondicionamiento, acondicionamiento y ensayoGoogle Scholar
  28. Nisperos-Carriedo, M. O. (1994). Edible coatings and films based on polysaccharides. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 305–330). Lancaster, PA: Technomic Pub. Co.Google Scholar
  29. Park, H., Weller, C., Vergano, P., & Testin, R. (1993). Permeability and mechanical properties of cellulose-based edible films. Journal of Food Science, 58(6), 1361–1364.CrossRefGoogle Scholar
  30. Phoopuritham, P., Thongngam, M., Yoksan, R., & Suppakul, P. (2012). Antioxidant properties of selected plant extracts and application in packaging as antioxidant cellulose-based films for vegetable oil. Packaging Technology and Science, 25, 125–136.CrossRefGoogle Scholar
  31. Racine, P. (1981). Influence of pH and light on the stability of some antioxidants. International Journal of Cosmetic Science, 3, 125–137.Google Scholar
  32. Ramírez, C., Gallegos, I., Ihl, M., Bifani, V., & Cruz, J. M. (2012). Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. Journal of Food Engineering, 109, 424–429.CrossRefGoogle Scholar
  33. Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513–519.CrossRefGoogle Scholar
  34. Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kahkonen, M., Kujala, T., et al. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56, 3–12.CrossRefGoogle Scholar
  35. Rimdusit, S., Jingjid, S., Damrongsakkul, S., Tiptipakorn, S., & Takeichi, T. (2008). Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydrate Polymers, 87, 1495–1502.Google Scholar
  36. Riou, V., Vernhet, A., Doco, T., & Moutounet, M. (2002). Aggregation of grape seed tannins in model wine—effect of wine polysaccharides. Food Hydrocolloids, 16, 17–23.Google Scholar
  37. Rubilar, J. F., Cruz, R. M. S., Silva, H. D., Vicente, A. A., Khmelinskii, I., & Vieira, M. C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115, 466–474.CrossRefGoogle Scholar
  38. Rubilar, M., Pinelo, M., Ihl, M., Scheuermann, E., Sineiro, J., & Nuñez, M. J. (2006). Murta leaves (Ugni molinae Turcz) as a source of antioxidant polyphenols. Journal of Agricultural and Food Chemistry, 54, 59–64.CrossRefGoogle Scholar
  39. Scheuermann, E., Seguel, I., Montenegro, A., Bustos, R. O., Hormazábal, E., & Quiroz, A. (2008). Evolution of aroma compounds of murtilla fruits (Ugni molinae Turcz) during storage. Journal of the Science of Food and Agriculture, 88, 485–492.CrossRefGoogle Scholar
  40. Schmid, M., Dallmann, K., Bugnicourt, E., Cordoni, D., Wild, F., Lazzeri, A., et al. (2012). Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. International Journal of Polymer Science. doi: 10.1155/2012/562381.Google Scholar
  41. Shene, C., Reyes, A., Villarroel, M., Sineiro, J., Pinelo, M., & Rubilar, M. (2009). Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. European Food Research and Technology, 228(3), 467–475.CrossRefGoogle Scholar
  42. Solano, A. C. V., & Gante, C. D. R. (2012). Two different processes to obtain antimicrobial packaging containing natural oils. Food and Bioprocess Technology, 5, 2522–2528.CrossRefGoogle Scholar
  43. Tunç, S., & Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Applied Clay Science, 48, 414–424.CrossRefGoogle Scholar
  44. Turhan, K. N., & Sahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61, 459–466.CrossRefGoogle Scholar
  45. Volf, I., Ignat, I., Neamtu, M., & Popa, V. I. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chemical Papers, 68, 121–129.CrossRefGoogle Scholar
  46. Wicklund, T., Rosenfeld, H. J., Martinsen, B. K., Sundfør, M. W., Lea, P., Bruun, T., Blomhoff, R., & Haffner, K. (2005). Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT - Food Science and Technology, 38(4), 387–391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carolin Hauser
    • 1
  • Angela Peñaloza
    • 2
  • Abél Guarda
    • 2
  • Maria José Galotto
    • 2
  • Julio E. Bruna
    • 2
  • Francisco J. Rodríguez
    • 2
  1. 1.Fraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
  2. 2.Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN-CHILE), Department of Food Science and Technology, Faculty of TechnologyUniversity of Santiago de ChileSantiagoChile

Personalised recommendations