Skip to main content

Advertisement

Log in

Effect of High-Pressure Processing on Physico-Chemical and Microbial Quality Characteristics of Chevon (Capra aegagrus hircus)

  • Opinion Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The quality parameters of chevon pertaining to physico-chemical and microbiological characteristics due to high-pressure processing (HPP) have been studied. Pre-packed meat pieces were subjected to HPP at selected pressures of 300 and 600 MPa for 5 and 10 min at 28 ± 2 °C. Changes in pH, texture, water activity, color, myoglobin, oxymyoglobin, metmyoglobin, microbial profile, and lipid peroxidative parameters in terms of non-heme iron and thiobarbituric acid reactive substance (TBARS) values after HPP and refrigerated storage (4 ± 1 °C) were examined for a period of 30 days. No statistically significant change was observed in the pH initially, but during 5–15 days of storage, treated samples recorded an increase in pH compared to control. Textural characteristics in terms of hardness and springiness revealed a significant (p < 0.05) increase due to HPP and subsequent reduction during storage. Significant increase (p < 0.05) in hunter color values of L* and b* and significant (p < 0.05) decrease in a* were observed with increase in pressure treatments during storage. The percentage of oxymyoglobin has shown significant (p < 0.05) reduction of 16 % with respect to control at 300 MPa. HPP at 600 MPa also produced significant (p < 0.05) reduction of 40 and 24 % in oxymyoglobin compared to control and 300-MPa treated samples, respectively. HPP at 300 and 600 MPa significantly increased (p < 0.05) the non-heme iron and TBARS values initially and during refrigerated storage. These two chemical markers exhibited a correlation coefficient of r 2 = 0.95. Microbial profile revealed better shelf life in terms of safety and quality characteristics due to HPP. Even though changes in physico-chemical parameters were observed in 300-MPa chevon samples, it was significantly (p < 0.05) lower than that of 600-MPa samples and produced a shelf life of 25 days at refrigerated storage. Studies revealed the potential of applying HPP for the development of ready-to-eat meat products by optimizing threshold pressure coupled with identification of proper additives which can suppress the undesirable chemical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Andrés, A. I., Adamsen, C. E., Møller, J. K. S., & Skibsted, L. H. (2004). High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and color. European Food Research and Technology, 219, 205–210.

    Article  Google Scholar 

  • Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus orhua) muscle. Food Chemistry, 63, 39–50.

    Article  CAS  Google Scholar 

  • Angsupanich, K., Edde, M., & Ledward, D. A. (1999). Effects of high pressure on the myofibrillar proteins of cod and turkey muscle. Journal of Agricultural and Food Chemistry, 4, 92–99.

    Article  Google Scholar 

  • APHA. (1992). In: Speck ML (ed) compendium of methods for the microbiological examination of foods (16th ed.). Washington: American public health association.

    Google Scholar 

  • Ashie, I. N. A., & Simpson, B. K. (1996). Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Research International, 29, 569–575.

    Article  CAS  Google Scholar 

  • Baston, O., & Barna, O. (2010). Raw chicken leg and breast sensory evaluation. Annals: Food Science and Technology, 11(1), 25–30.

    Google Scholar 

  • Bolumar, T., Skibsted, L. H., & Orlien, V. (2012). Kinetics of the formation of radicals in meat during high pressure processing. Food Chemistry, 134, 2114–2120.

    Article  CAS  Google Scholar 

  • Bourne, M. C. (2002). Food texture and viscosity: concept and measurement (2 (ndth ed.). London: Academic.

    Google Scholar 

  • Briones-Labarca, V., Perez-Won, M., Zamarca, M., Aguilera-Radic, J. M., & Tabilo-Munizaga, G. (2012). Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (Haliotis rufecens) during cold storage time. Innovative Food Science and Emerging Technologies, 13, 42–50.

    Article  CAS  Google Scholar 

  • Campus, M., Flores, M., Martinez, A., & Toldra, F. (2008). Effect of high pressure treatment on color, microbial and chemical characteristics of dry cured loin. Meat Science, 80, 1174–1181.

    Article  CAS  Google Scholar 

  • Canto, A. C., Costa-Lima, B. R., Suman, S. P., Monteiro, M. L. G., Marsico, E. T., Conte-Junior, C. A., & Silva, T. J. (2015). Fatty acid profile and bacteriological quality of caiman meat subjected to high hydrostatic pressure. LWT-Food Science and Technology.

  • Carlez, A., Rosec, J. P., Richard, N., & Cheftel, J. C. (1993). High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. Lebenson Wiss Technology, 26, 357–363.

    Article  Google Scholar 

  • Carlez, A., Veciana-Nogues, T., & Chefte, J. C. (1995). Changes in colour and myoglobin of minced beef meat due to high pressure processing. Lebenson Wiss Technology, 28, 528–53.

    Article  CAS  Google Scholar 

  • Chan, J. T. Y., Omana, D. A., & Betti, M. (2011). Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innovative Food Science and Emerging Technologies, 12, 216–225.

    Article  CAS  Google Scholar 

  • Chapman, B., Winley, E., Fong, A. S. W., Hocking, A. D., Stewart, C. M., & Buckle, K. A. (2007). Ascospore inactivation and germination by high pressure processing is affected by ascospore age. Innovative Food Science and Emerging Technology, 8, 531–534.

    Article  Google Scholar 

  • Cheah, P. B., & Ledward, D. A. (1996). High pressure effects on lipid oxidation in minced pork. Meat Science, 43, 123–134.

    Article  CAS  Google Scholar 

  • Cheah, P. B., & Ledward, D. A. (1997). Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Science, 45(3), 411–418.

    Article  CAS  Google Scholar 

  • Cheftel, J. C., & Culioli, J. (1997). Effects of high pressure on meat: a review. Meat Science, 46(3), 211–236.

    Article  CAS  Google Scholar 

  • Chevalier, D., Le Bail, A., & Goul, M. (2001). Effect of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, 34, 425–429.

    Article  CAS  Google Scholar 

  • Dainty, R. H., & Mackey, B. M. (1992). The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. The Journal of Applied Bacteriology, 73, 103–114.

    Article  Google Scholar 

  • Del Olmo, A., Morales, P., A’vila, M., Calzada, J., & Nun˜ez, M. (2010). Effect of single-cycle and multiple-cycle high-pressure treatments on the colour and texture of chicken breast fillets. Innovative Food Science and Emerging Technology, 11(3), 441–4.

    Article  Google Scholar 

  • Doona, C. J., Feeherry, F. E., Ross, E. W., & Kustin, K. (2012). Inactivation kinetics of Listeria monocytogenes by high-pressure processing: pressure and temperature variation. Journal of Food Science, 77, M458–M465.

    Article  CAS  Google Scholar 

  • Farkas, D. F., & Hoover, D. G. (2000). High pressure processing. Kinetics of microbial inactivation for alternative food processing technologies. Journal of Food Science, 65, 47–64.

    Article  Google Scholar 

  • Fuentes, V., Ventanas, J., Morcuende, D., Estévez, M., & Ventanas, S. (2010). Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Science, 85(3), 506–514.

    Article  CAS  Google Scholar 

  • Garrigaa, M., Gre’bola, N., Aymericha, M. T., Monforta, J. M., & Hugas, M. (2004). Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, 5, 451–457.

    Article  Google Scholar 

  • Gou, J., Lee, H. Y., & Ahn, J. (2010). Effect of high pressure processing on the quality of squid (Todarodes pacificus) during refrigerated storage. Food Chemistry, 119(2), 471–476.

    Article  CAS  Google Scholar 

  • Goutefongea, R., Rampon, V., Nicolas, N., & Dumont J. P. (1995). Meat color changes under high pressure treatment. 41st ICoMST, Meat Science Association. (eds), II, 384–385.

  • Gram, L., & Huss, H. H. (2000). Flesh and processed fish and shell fish. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (1st ed., pp. 472–506). Maryland: Aspen Publishers.

    Google Scholar 

  • Hurtado, J. L., Montero, P., & Borderı’as, J. (2000). Extension of shelf life of chilled hake (Merluccius capaensis) by high pressure. Food Science and Technology International, 6, 243–249.

    Article  Google Scholar 

  • Hyams, D. (2003). Curve expert 1. 3: A comprehensive curve fitting system for windows copyright ©, 1995 – 2003. http://curveexpert.Webhop.Net.

  • Igene, J. O., Yamaguchi, K., Pearson, A. M., & Gray, J. I. (1985). Mechanism by which nitrite inhibits the development of warmed over flavour in cured meat. Food Chemistry, 18, 1–18.

    Article  CAS  Google Scholar 

  • Jay, J. M. (2000). Indicators of food microbial quality and safety. In Modern Food Microbiology (pp. 387–406)). Springer US.

  • Jiménez-Colmenero, F., & Borderias, A. J. (2003). High-pressure processing of myosystems. Uncertainties in methodology and their consequences for evaluation of results. European Food Research and Technology, 217, 461–465.

    Article  Google Scholar 

  • Jofré, A., Aymerich, T., Grèbol, N., & Garriga, M. (2009). Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. Food Science and Technology, 42(5), 924–928.

    Google Scholar 

  • Jung, S., Ghoul, M., & De Lamballerie-Anton, M. (2000a). Changes in lysosomal enzyme activities and shear values of high pressure treated meat during ageing. Meat Science, 56(3), 239–246.

    Article  CAS  Google Scholar 

  • Jung, S., de Lamballerie-Anton, M., & Ghoul, M. (2000b). Modifications of ultrastructure and myofibrillar proteins of post-rigor beef treated by high pressure. Food Science and Technology, 33(4), 313–9.

    CAS  Google Scholar 

  • Jung, S., Ghoul, M., & de Lamballerie-Anton, M. (2003). Influence of high pressure on the color and microbial quality of beef meat. LWT-Food Science and Technology, 36(6), 625–631.

  • Kaur, B. P., Kaushik, N., Rao, P. S., & Chauhan, O. P. (2013). Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon). Food and Bioprocess Technology, 6(6), 1390–1400.

    Article  Google Scholar 

  • Kruk, Z. A., Yun, H., Rutley, D. L., Lee, E. J., Kim, Y. J., & Jo, C. (2011). The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control, 22(1), 6–12.

    Article  Google Scholar 

  • Krzywicki, K. (1982). The determination of haem pigments in meat. Meat Science, 7, 29–36.

    Article  CAS  Google Scholar 

  • Lamballerie-Anton, M. D., Taylor, R. G., & Culioli, J. (2002). High pressure processing of meat. In J. Kerry, J. Kerry, & D. Ledward (Eds.), Meat processing: improving quality (pp. 313–324). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Ledward, D. A. (1998). High pressure processing of meat and fish. In: Fresh novel foods by high pressure, Autio K., VTT, Biotechnology and Food Research (eds), 165–175.

  • Low, P. S., & Somero, G. N. (1974). Temperature adaptation of enzymes. A proposed molecular basis for the different catalytic efficiencies of enzymes from ectotherms and endotherms. Biochemical Physiology, 49, 307–312.

    CAS  Google Scholar 

  • Ma, H. J., Ledward, D. A., Zamri, A. I., Frazier, R. A., & Zhou, G. H. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef & chicken muscle. Food Chemistry, 104, 1575–1579.

    Article  CAS  Google Scholar 

  • Manat, C. (2008). Review: lipid and myoglobin oxidations in muscle foods. Songklanakarin Journal of Science and Technology, 30(1), 47–53.

    Google Scholar 

  • Marcos, B., Kerry, J. P., & Mullen, A. M. (2010). High-pressure-induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115–20.

    Article  CAS  Google Scholar 

  • Mc Ardle, R., Marcos, B., Kerry, J. P., & Mullen, A. (2010). Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Science, 86(3), 629–634.

    Article  CAS  Google Scholar 

  • McDowell, D. A., Hobson, I., Strain, J. J., & Owens, J. J. (1986). Bacterial flora of chilled stored beef carcasses. Environmental and Health, 95, 65–68.

    Google Scholar 

  • Mead, G. C. (1987). Recommendation for a standardized method of sensory analysis for broilers. World's Poultry Science Journal, 43, 64–68.

    Google Scholar 

  • Murchie, L. W., Cruz-Romero, M., Kerry, J. P., Linton, M., Patterson, M. F., & Smiddy, M. (2005). High pressure processing of shellfish: a review of microbiological and other quality aspects. Innovative Food Science and Emerging Technologies, 6, 257–270.

    Article  Google Scholar 

  • O’Brien, J. K., & Marshall, R. T. (1996). Microbiological quality of raw ground chicken processed at high isostatic pressure. Journal of Food Protection, 59, 146–150.

    Google Scholar 

  • Ohshima, T., Ushio, H., & Koizumi, C. (1993). High-pressure processing of fish and fish products. Trends in Food Science and Technology, 4(11), 370–375.

    Article  CAS  Google Scholar 

  • Omer, M. K., Prieto, B., Rendueles, E., Alvarez-Ordoñez, A., Lunde, K., Alvseike, O., & Prieto, M. (2015). Short Communication: Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with High Hydrostatic Pressure processed raw meat. Meat Science.

  • Orlien, V., Hansen, E., & Skibsted, L. H. (2000). Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. European Food Research and Technology, 211, 99–104.

    Article  CAS  Google Scholar 

  • Patterson, M. F. (2005). Microbiology of pressure-treated foods. Journal of Applied Microbiology, 98(6), 1400–1409.

    Article  CAS  Google Scholar 

  • Purchas, R. W., Simcock, D. C., Knight, T. W., & Wilkinson, B. H. P. (2003). Variation in the form of iron in beef and lamb meat and losses of iron during cooking and storage. International Journal of Food Science and Technology, 38(7), 827–837.

    Article  CAS  Google Scholar 

  • Rademacher, B. (2006). Ultrahochdruckverfahren zur Keiminaktivierung. Chemie Ingenieur Technik, 78(11), 1674–1681.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Raghavaro, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47, 69–112.

    Article  CAS  Google Scholar 

  • Scheibenzuber, M., Ruß, W., Görg, A., & Meyer-Pittroff, R. (2002). Scanning electron microscopic study of high pressure induced microstructural changes of proteins in turkey and pork meat. Progress in Biotechnology, 19, 545–550.

    Article  Google Scholar 

  • Shand, P. J. (2000). Textural, water holding and sensory properties of low-fat pork bologna with normal or waxy starch hull less barley. Journal of Food Science, 65, 101–107.

    Article  CAS  Google Scholar 

  • Simpson, R. K., & Gilmour, A. (1997). The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate-buffered saline and model food systems. Journal of Applied Microbiology, 83, 181–188.

    Article  CAS  Google Scholar 

  • Souza, C. M., Boler, D. D., Clark, D. L., Kutzler, L. W., Holmer, S. F., & Summerfiled, J. W. (2011). The effects of high pressure processing on pork quality, palatability, and further processed products. Meat Science, 87(4), 419–427.

    Article  CAS  Google Scholar 

  • Stollewerk, K., Jofré, A., Comaposada, J., Arnau, J., & Garriga, M. (2014). NaCl-free processing, acidification, smoking and high pressure: effects on growth of Listeria monocytogenes and Salmonella enterica in QDS processed® dry-cured ham. Food Control, 35, 56–64.

    Article  CAS  Google Scholar 

  • Sun, X. D., & Holley, R. A. (2010). High hydrostatic pressure effects on the texture of meat and meat products. Journal of Food Science, 75, R17–R23.

    Article  CAS  Google Scholar 

  • Sun, D. W., & Norton, T. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34.

    Article  Google Scholar 

  • Tananuwong, K., Chitsakun, T., & Tattiyakul, J. (2012). Effects of high-pressure processing on inactivation of Salmonella typhimurium, eating quality, and microstructure of raw chicken breast fillets. Journal of Food Science, 77(11), E321–E327.

    Article  CAS  Google Scholar 

  • Taraldgis, B. G., Watts, B. M., Younathan, M. T., & Dugan, L. J. (1960). A distillation method for quantitative determination of malonaldehyde in rancid foods. Journal of American Oil Chemists Society, 37, 44–48.

    Article  Google Scholar 

  • Töpfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: potential of emerging technologies for energy efficient and environmentally friendly food processing. Food Reviews International, 22, 405–423.

    Article  Google Scholar 

  • Tuboly, E., Lebovics, V. K., Gaál, O., Mészáros, L., & Farkas, J. (2003). Microbiological and lipid oxidation studies on mechanically deboned turkey meat treated by high hydrostatic pressure. Journal of Food Engineering, 56, 241–244.

    Article  Google Scholar 

  • Tume, R. K., Sikes, A. L., & Smith, S. B. (2010). Enriching M. Sternomandibularis muscle with alpha-tocopherol by dietary means does not protect against the lipid oxidation caused by high-pressure processing. Meat Science, 84(1), 66–70.

    Article  CAS  Google Scholar 

  • Wackerbarth, H., Kuhlmann, U., Tintchev, F., Heinz, V., & Hildebrandt, P. (2009). Structural changes of myoglobin in pressure-treated pork meat probed by resonance Raman spectroscopy. Food Chemistry, 115, 1194–1198.

    Article  CAS  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2007). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and Mahi Mahi. Journal of Food Science, 72, 509–515.

    Article  Google Scholar 

  • Young, L. L., & Lyon, C. E. (1997). Effect of calcium marination on biochemical and textural properties of pre-rigor chicken breast meat. Poultry Science, 76, 197–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jayathilakan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalarama Reddy, K., Jayathilakan, K., Chauhan, O.P. et al. Effect of High-Pressure Processing on Physico-Chemical and Microbial Quality Characteristics of Chevon (Capra aegagrus hircus). Food Bioprocess Technol 8, 2347–2358 (2015). https://doi.org/10.1007/s11947-015-1617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1617-6

Keywords

Navigation