High Pressure Pasteurization of Sugarcane Juice: Evaluation of Microbiological Shelf Life and Quality Evolution During Refrigerated Storage

Abstract

In this study, sugarcane juice subjected to both high-pressure processing (HPP) and thermal pasteurization (TP) was used to compare the changes in microbial levels, physicochemical properties, antioxidant capacity, sugar content, activity of sucrose neutral invertase, and sensory analysis during 28 days of refrigerated storage. Results showed that HPP treatment of 600 MPa and TP significantly reduced aerobic bacteria, coliform, and yeast counts. At day 28 of storage, HPP-treated juice (600 MPa/6 min) displayed no significant differences when compared to the fresh juice in terms of physicochemical properties such as total titratable acidity, pH, and total soluble solids. Although significant differences were observed in HPP-treated juice in color, antioxidants, and antioxidant capacity, the extent of the differences was substantially lower than that in thermal-treated juice, indicating that HPP treatment can retain better quality of sugarcane juice. After HPP treatment of 600 MPa and TP, invertase enzyme activity on day 7 declined to 87.69 and 82.86 %, respectively, which could possibly prevent sucrose conversion to fructose and glucose during refrigerated storage. Sensory testing showed no significant difference between HPP-treated juice and fresh juice, while TP reduced the acceptance of sugarcane juice. Collectively, this study indicated that HPP pasteurization can successfully reduce the microbial load in sugarcane juice. Meanwhile, HPP treatment maintains stable quality and inhibits enzyme activity, and thus, it can effectively extend shelf-life during refrigerated storage. Thus, HPP has a great potential in the development of drinks with fresh sugarcane juice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. AOAC Official methods of analysis (1990). Vol. 1 (15th ed., ). Washington, DC: Association of Analytical Chemists.

    Google Scholar 

  2. Adams, J. B. (1991). Enzyme inactivation during heat processing of foodstuffs. International Journal of Food Science and Technology, 26, 1–20.

    CAS  Article  Google Scholar 

  3. Adel, A. K. (2008). Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 88, 1863–1868.

    Article  Google Scholar 

  4. AOAC Official methods of analysis. (2011). W. Horwitz, G. Latimer (Eds.), Method 2002.02 and method 2009.01, 18th ed. Rev 4, AOAC International, Gaithersburg, Maryland.

  5. Bucheli, C., & Robinson, S. P. (1994). Contribution of enzymic browning to color in sugarcane juice. Journal of Agricultural Food Chemistry, 42, 257–261.

    CAS  Article  Google Scholar 

  6. Battey, A. S., Duffy, S., & Schaffner, D. W. (2002). Modeling yeast spoilage in cold-filled ready-to-drink beverages with Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica. American Society for Microbiology., 68, 1901–1906.

    CAS  Google Scholar 

  7. Bayındırlı, A., Alpas, H., Bozoğlu, F., & Hızal, M. (2006). Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Food Control, 17, 52–58.

    Article  Google Scholar 

  8. Bosch, S., Grof, C. P., & Botha, F. C. (2004). Expression of neutral invertase in sugarcane. Plant Science, 166, 1125–1133.

    CAS  Article  Google Scholar 

  9. Calabia, B. P., & Tokiwa, Y. (2007). Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnology Letters, 29, 1329–1332.

    CAS  Article  Google Scholar 

  10. Cao, X. M., Zhang, Y., Zhang, F. S., Wang, Y. T., Yi, J. Y., & Liao, X. J. (2011). Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food and Agriculture, 91, 877–885.

    CAS  Article  Google Scholar 

  11. Cao, X., Bi, X., Huang, W., Wu, J., Hu, X., & Liao, X. (2012). Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innovative Food Science and Emerging Technologies, 16, 181–190.

    CAS  Article  Google Scholar 

  12. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  13. Chauhan, O. P., Singh, D., Tyagi, S. M., & Balyan, D. K. (2002). Studies on preservation of sugarcane juice. International Journal Food Properties, 5, 217–229.

    Article  Google Scholar 

  14. Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, S. I. (1998). A rapid method to monitor quality of apple thermal processing. 1998. LWT - Food Science and Technology, 31, 612–616.

    Article  Google Scholar 

  15. Daoudi, L., Quevedo, J. M., Trujillo, A. J., Capdevila, F., Bartra, E., & Mínguez, S. (2002). Effects of high-pressure treatment on the sensory quality of white grape juice. High Pressure Research, 22, 705–709.

    Article  Google Scholar 

  16. Demazeau, G., & Rivalain, N. (2011). High hydrostatic pressure and biology: a brief history. Applied Microbiology and Biotechnology, 89, 1305–1314.

    CAS  Article  Google Scholar 

  17. Fernández-García, A., Butz, P., Bognar, A., & Tauscher, B. (2001). Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange–lemon–carrot juice product after high pressure treatment and storage in different packaging. European Food Research and Technology, 213, 290–296.

    Article  Google Scholar 

  18. Frank, O., Jezussek, M., & Hofmann, T. (2003). Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-Oxo-2,3-dihydro-1H-indolizinium-6-olates. Journal of Agricultural and Food Chemistry, 51, 2693–2699.

    CAS  Article  Google Scholar 

  19. Dong, P., Kong, M., Yao, J., Zhang, Y., Liao, X., Hu, X., & Zhang, Y. (2013). The effect of high hydrostatic pressure on the microbiological quality and physicochemical properties of lotus root during refrigerated storage. Innovative Food Science and Emerging Technologies, 19, 79–84.

    CAS  Article  Google Scholar 

  20. Garza, S., Ibarz, A., Pagan, J., & Giner, J. (1999). Non-enzymatic browning in peach puree during heating. Food Research International, 2, 335–343.

    Article  Google Scholar 

  21. Guerrero-Beltrán, J. A., Barbosa-Cánovas, G. V., & Swanson, B. G. (2005). High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International, 21, 411–425.

    Article  Google Scholar 

  22. Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science and Technology, 33, 54–62.

    CAS  Article  Google Scholar 

  23. Huang, H. W., Lung, H. S., Yang, B. B., & Wang, C. Y. (2014). Responses of microorganisms to high hydrostatic pressure processing. Food Control, 40, 250–259.

    Article  Google Scholar 

  24. Ibarz, A., Pagan, J., & Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39, 415–422.

    Article  Google Scholar 

  25. Irene, A. B., Kerry, E., Katherine, S., & Frank, B. W. (2005). High pressure processing of Australian navel orange juices: sensory analysis and volatile flavor profiling. Innovative Food Science and Emerging Technologies, 6, 372–387.

    Article  Google Scholar 

  26. Kadam, U. S., Ghosh, S. B., Strayo De, P., Suprasanna, P., Devasagayam, T. P. A., & Bapat, V. A. (2008). Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chemistry, 106, 1154–1160.

    CAS  Article  Google Scholar 

  27. Kaushik, N., Kaur, B. P., & Rao, P. S. (2013). Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage. Food Science and Technology International, 20, 527–541.

    Article  Google Scholar 

  28. Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science and Emerging Technologies, 22, 40–50.

    CAS  Article  Google Scholar 

  29. Keenan, D. F., Brunton, N., Gormley, R., & Butler, F. (2011). Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies. Journal of Agricultural and Food Chemistry, 59, 601–607.

    CAS  Article  Google Scholar 

  30. Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., & van der Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science and Emerging Technologies, 4, 377–385.

    Article  Google Scholar 

  31. Ludikhuyze, L., Van Loey, A., Indrawati, Smout, C., & Hendrickx, M. (2003). Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects. Critical Reviews in Food Science and Nutrition, 43, 527–586.

    CAS  Article  Google Scholar 

  32. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Biochemistry, 31, 426–428.

    CAS  Google Scholar 

  33. Miller, N. J., Rice-Evans, C. A., Davis, M. J., Gopinathan, M., & Milner, M. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84, 407–412.

    CAS  Article  Google Scholar 

  34. Moreno, J., Chiralt, A., Escriche, I., & Serra, J. A. (2000). Effect of blanching/osmotic dehydration combined methods on quality and stability of minimally processed strawberries. Food Research International, 33, 609–616.

    Article  Google Scholar 

  35. Mao, L., Que, F., & Wang, G. (2005). Sugar metabolism and involvement of enzymes in sugarcane (Saccharum officinarum L.) stems during storage. Food Chemistry, 98, 338–342.

    Article  Google Scholar 

  36. Oey, I., Lille, M., Loey, A. V., & Hendrickx, M. (2008). Effect of high pressure processing on colour, texture and flavour of fruitand vegetable-based food products: a review. Trends in Food Science & Technology, 19, 320–328.

    CAS  Article  Google Scholar 

  37. Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., Elez-MartíInez, P., & Martíın-Belloso, O. (2012). Stability of health related compounds in plant foods through the application of non thermal processes. Trends in Food Science & Technology, 23, 111–123.

    CAS  Article  Google Scholar 

  38. Plangklang, P., Reungsang, A., & Pattra, S. (2012). Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. International Journal of Hydrogen Energy, 37, 15525–15532.

    CAS  Article  Google Scholar 

  39. Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2005). Effect of high hydrostatic pressure treatment on post processing antioxidant activity of fresh navel orange juice. Food Chemistry, 91, 495–503.

    CAS  Article  Google Scholar 

  40. Qudsieh, H. Y., Yusof, S., Osman, A., & Rahman, R. A. (2002). Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. yellow cane). Journal of Agricultural and Food Chemistry, 50, 1615–1618.

    CAS  Article  Google Scholar 

  41. Rastogi, N. K., Raghavarao, K. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47, 69–112.

    CAS  Article  Google Scholar 

  42. Rattanathanalerk, M., Chiewchan, N., & Srichumpoung, W. (2005). Effects of thermal processing on the quality loss of pineapple juice. Journal of Food Engineering, 66, 259–265.

    Article  Google Scholar 

  43. Romero, C., Morales, F. J., & Jimenez-Perez, S. (2001). Effect of storage temperature on galactose formation in UHT milk. Food Research International, 34, 389–392.

    CAS  Article  Google Scholar 

  44. Sehtiya, H. L., & Densay, J. P. S. (1991). Internodal invertase and stalk maturity in sugarcane. Journal of Agricultural Science, 116, 239–243.

    CAS  Article  Google Scholar 

  45. Singh, I., Mysore, N. R., Borse, B. B., Kulathooran, R., Bashyam, R., & Vishweshwaraiah, P. (2004). Process for preparing read-to-drink shelf stable sugarcane juice beverage. United States Patent, No. 6723367 B2.

  46. Singh, A., Sharma, P., Saran, A. K., Singh, N., & Bishnoi, N. R. (2013). Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy, 50, 488–493.

    CAS  Article  Google Scholar 

  47. Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61, 928–931.

    CAS  Article  Google Scholar 

  48. Tew, T. L., & Cobill, R. M. (2008). Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In Vermerris, W. Genetic Improvement of Bioenergy Crops. Springer, 273–294.

  49. Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel. Critical Reviews in Food Science and Nutrition, 54, 24–63.

    CAS  Article  Google Scholar 

  50. Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J. E., Pérez-Won, M., Briones-Labarca, V., & Morales-Castro, J. (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science and Emerging Technologies, 13, 13–22.

    CAS  Article  Google Scholar 

  51. Wang, Y., Liu, F., Cao, X., Chen, F., Hu, X., & Liao, X. (2012). Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, 16, 326–334.

    CAS  Article  Google Scholar 

  52. Weerachet, J., Somsak, W., Hathainid, C., & Sirichai, S. (2011). Effects of varieties, heat pretreatment and UHT conditions on the sugarcane juice quality. Chiang Mai Journal of Science, 38, 116–125.

    Google Scholar 

  53. Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. African Journal of Biotechnology, 7, 2739–2767.

    CAS  Google Scholar 

  54. Yen, G. C., & Lin, H. T. (1999). Changes in volatile flavor components of guava juice with high-pressure treatment and heat processing and during storage. Journal of Agricultural and Food Chemistry, 47, 2082–2087.

    CAS  Article  Google Scholar 

  55. Yusof, S., Shian, L. S., & Osman, A. (2000). Changes in quality of sugar-cane juice upon delayed extraction and storage. Food Chemistry, 68, 395–401.

    CAS  Article  Google Scholar 

  56. Zhang, J., Wang, J., Zhang, W., & Wang, H. (2008). Effect of ultra high pressure treatment on flavor components in mango juice. Journal of Chinese Institute of Food Science and Technology, 8, 118–122.

    CAS  Google Scholar 

  57. Zheng, X., Yu, Y., Xiao, G., Xu, Y., Wu, J., Tang, D., & Zhang, Y. (2014). Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innovative Food Science and Emerging Technologies, 23, 61–67.

    CAS  Article  Google Scholar 

  58. Zhou, C. L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y. Y., & Li, Q. H. (2014). The effect of high hydrostatic pressure on themicrobiological quality and physical–chemical characteristics of pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science and Emerging Technologies, 21, 24–34.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Ministry of Science and Technology, MOST 103-2313-B-080-001, Taiwan, Republic of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chung-Yi Wang.

Electronic supplementary material

Table S1

(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, HW., Chang, Y.H. & Wang, CY. High Pressure Pasteurization of Sugarcane Juice: Evaluation of Microbiological Shelf Life and Quality Evolution During Refrigerated Storage. Food Bioprocess Technol 8, 2483–2494 (2015). https://doi.org/10.1007/s11947-015-1600-2

Download citation

Keywords

  • High pressure processing
  • Sugarcane juice
  • Sucrose neutral invertase
  • Shelf-life