Food and Bioprocess Technology

, Volume 8, Issue 12, pp 2418–2428 | Cite as

Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil

  • Poonam R. Bajaj
  • Juming Tang
  • Shyam S. SablaniEmail author
Original Paper


This study investigated the potential of three commercially available pea protein isolates (PPIs), Nutralys (Roquette, USA), PP (Znaturals, USA), and Pulseplus80 (AGT, Canada) as wall materials for microencapsulating flaxseed oil. Microencapsulation with spray drying was conducted with PPIs at 10 % concentration and varied flaxseed-oil-to-wall-material ratios (1:5, 1:3.3, and 1:2.5). All three PPIs emulsion prepared using 1:5 core-to-wall ratio were stable. Microencapsulation efficiencies (MEs) at 1:5 core-to-wall-material ratio were 90.46, 84.9, and 71.9 % for Nutralys, PP, and Pulseplus80, respectively. Results show that when the core-to-wall-material ratio increased to 1:2.5, the MEs decreased to 67.9, 75.6, and 44.6 % for Nutralys, PP, and Pulseplus80, respectively. Proximate composition of PPIs influenced the functional properties and emulsion stability and, ultimately, MEs. Electrophoresis and Fourier transform infrared spectroscopy (FTIR) analyses were conducted to determine differences in these three proteins. This study also evaluated microcapsules prepared with 1:5 ratio for water content, water activity, solubility, and morphological properties. Findings demonstrate that PPI, a natural, low-cost, allergen-free ingredient can be used effectively as a wall material for microencapsulation at a 10 % solid concentration.


Emulsion FTIR Microencapsulation efficiency Physical properties Spray drying 



This project was funded in part by the Bill and Melinda Gates Foundation, WA, by the USA Dry Pea and Lentil Council, WA, and Emerging Research Issues internal grant from the Washington State University, College if Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center. We acknowledge Franck Younce, Mahmoudreza Ovissipour, Shreeya Ravishankar, and Ellen Bornhorst for their technical assistances with spray drying, FTIR electrophoresis analysis, and Na+ analysis, respectively.


  1. AACC (2012). American Association of Cereal Chemists approved method 56–30.01 (11th Ed.). St. Paul.Google Scholar
  2. AOAC (1995). Official methods of analysis of the Association of Official Analytical Chemistry (16th Ed). In In AOAC International, 1141. Washington.Google Scholar
  3. Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). Integrated optimization of fish oil microencapsulation process by spray drying. Journal of Microencapsulation, 29(8), 790–804.CrossRefGoogle Scholar
  4. Ahn, J.-H., Kim, Y.-P., Lee, Y.-M., Seo, E.-M., Lee, K.-W., & Kim, H.-S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98–105. doi: 10.1016/j.foodchem.2007.07.067.CrossRefGoogle Scholar
  5. Bajaj, P. R., Survase, S. A., Bule, M. V., & Singhal, R. S. (2010). Studies on viability of Lactobacillus fermentum by microencapsulation using extrusion spheronization. Food Biotechnology, 24(2), 150–164.CrossRefGoogle Scholar
  6. Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., et al. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537–546. doi: 10.1016/j.foodres.2009.07.021.CrossRefGoogle Scholar
  7. Butt, M. S., & Batool, R. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4), 373–379.CrossRefGoogle Scholar
  8. Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.Google Scholar
  9. Cheung, L., Wanasundara, J., & Nickerson, M. (2015). Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics, 10(1), 30–38. doi: 10.1007/s11483-014-9350-7.CrossRefGoogle Scholar
  10. Costa, A. M. M., Nunes, J. C., Lima, B. N. B., Pedrosa, C., Calado, V., Torres, A. G., et al. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168(0), 157–166. doi: 10.1016/j.foodchem.2014.07.016.CrossRefGoogle Scholar
  11. Dong, D., Qi, Z., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2015). Microencapsulation of flaxseed oil by soya proteins–gum arabic complex coacervation. International Journal of Food Science & Technology.Google Scholar
  12. Donsì, F., Senatore, B., Huang, Q., & Ferrari, G. (2010). Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. Journal of Agricultural and Food Chemistry, 58(19), 10653–10660.CrossRefGoogle Scholar
  13. Drusch, S., Serfert, Y., Scampicchio, M., Schmidt-Hansberg, B., & Schwarz, K. (2007). Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. Journal of Agricultural and Food Chemistry, 55(26), 11044–11051. doi: 10.1021/jf072536a.CrossRefGoogle Scholar
  14. Dziuba, J., Szerszunowicz, I., Nałęcz, D., & Dziuba, M. (2014). Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds. Acta Scientiarum Polonorum. Technologia Alimentaria, 13(2), 181–190.CrossRefGoogle Scholar
  15. Gerber, M. (2012). Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. British Journal of Nutrition, 107(S2), S228–S239.CrossRefGoogle Scholar
  16. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.CrossRefGoogle Scholar
  17. Gharsallaoui, A., Saurel, R., Chambin, O., Cases, E., Voilley, A., & Cayot, P. (2010). Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, 122(2), 447–454. doi: 10.1016/j.foodchem.2009.04.017.CrossRefGoogle Scholar
  18. Goyal, A., Sharma, V., Upadhyay, N., Singh, A., Arora, S., Lal, D., et al. (2014). Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids. Journal of Food Science and Technology, 1-10.Google Scholar
  19. Harper, C. R., & Jacobson, T. A. (2005). Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. The American Journal of Cardiology, 96(11), 1521–1529. doi: 10.1016/j.amjcard.2005.07.071.CrossRefGoogle Scholar
  20. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835. doi: 10.1080/07373930802135972.CrossRefGoogle Scholar
  21. Jafari, S. M., Beheshti, P., & Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with arabic gum. Journal of Food Engineering, 109(1), 1–8.CrossRefGoogle Scholar
  22. Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1), 77–89.CrossRefGoogle Scholar
  23. Karaca, A. C., Nickerson, M., & Low, N. H. (2013). Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139(1–4), 448–457. doi: 10.1016/j.foodchem.2013.01.040.CrossRefGoogle Scholar
  24. Kingman, S. M., Walker, A. F., Low, A., Sambrook, I., Owen, R., & Cole, T. (1993). Comparative effects of four legume species on plasma lipids and faecal steroid excretion in hypercholesterolaemic pigs. British Journal of Nutrition, 69(02), 409–421.CrossRefGoogle Scholar
  25. Koyoro, H., & Powers, J. (1987). Functional properties of pea globulin fractions. Cereal Chemistry, 64(2), 97.Google Scholar
  26. Kuang, P., Zhang, H., Bajaj, P. R., Yuan, Q., Tang, J., Chen, S., et al. (2015). Physicochemical properties and storage stability of lutein microcapsules prepared with maltodextrins and sucrose by spray drying. Journal of Food Science.Google Scholar
  27. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  28. Li, H., Prairie, N., Udenigwe, C. C., Adebiyi, A. P., Tappia, P. S., Aukema, H. M., et al. (2011). Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of Agricultural and Food Chemistry, 59(18), 9854–9860.CrossRefGoogle Scholar
  29. Liu, S., Low, N. H., & Nickerson, M. T. (2010). Entrapment of flaxseed oil within gelatin-gum arabic capsules. Journal of the American Oil Chemists’ Society (JAOCS), 87(7), 809–815. doi: 10.1007/s11746-010-1560-7.CrossRefGoogle Scholar
  30. Omar, K. A., Shan, L., Zou, X., Song, Z., & Wang, X. (2009). Effects of two emulsifiers on yield and storage of flaxseed oil powder by response surface methodology. Pakistan Journal of Nutrition, 8(9), 1316–1324.CrossRefGoogle Scholar
  31. Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C., & Pierucci, A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International, 42(1), 115–121. doi: 10.1016/j.foodres.2008.10.008.CrossRefGoogle Scholar
  32. Pierucci, A. P. T. R., Andrade, L. R., Baptista, E. B., Volpato, N. M., & Rocha-Leão, M. H. M. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654–662. doi: 10.1080/02652040600776523.CrossRefGoogle Scholar
  33. Pinnamaneni, S., Das, N., & Das, S. (2003). Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 58(8), 554–558.Google Scholar
  34. Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7(8), 2354–2365.CrossRefGoogle Scholar
  35. Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337.CrossRefGoogle Scholar
  36. Rigamonti, E., Parolini, C., Marchesi, M., Diani, E., Brambilla, S., Sirtori, C. R., et al. (2010). Hypolipidemic effect of dietary pea proteins: impact on genes regulating hepatic lipid metabolism. Molecular Nutrition & Food Research, 54(S1), S24–S30.CrossRefGoogle Scholar
  37. Roy, F., Boye, J., & Simpson, B. (2010). Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Research International, 43(2), 432–442.CrossRefGoogle Scholar
  38. Sarkar, S., & Singhal, R. S. (2011). Esterification of guar gum hydrolysate and gum arabic with n−octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydrate Polymers, 86(4), 1723–1731.CrossRefGoogle Scholar
  39. Sathe, S. K., Deshpande, S., Salunkhe, D., & Rackis, J. J. (1984). Dry beans of phaseolus. A review. Part 1. Chemical composition: proteins. Critical Reviews in Food Science and Nutrition, 20(1), 1–46.CrossRefGoogle Scholar
  40. Serfert, Y., Drusch, S., & Schwarz, K. (2009). Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry, 113(4), 1106–1112. doi: 10.1016/j.foodchem.2008.08.079.CrossRefGoogle Scholar
  41. Sourdet, S., Relkin, P., & César, B. (2003). Effects of milk protein type and pre-heating on physical stability of whipped and frozen emulsions. Colloids and Surfaces B: Biointerfaces, 31(1), 55–64.CrossRefGoogle Scholar
  42. Taherian, A. R., Fustier, P., & Ramaswamy, H. S. (2007). Effects of added weighing agent and xanthan gum on stability and rheological properties of beverage cloud emulsions formulated using modified starch. Journal of Food Process Engineering, 30(2), 204–224. doi: 10.1111/j.1745-4530.2007.00109.x.CrossRefGoogle Scholar
  43. Taherian, A. R., Mondor, M., Labranche, J., Drolet, H., Ippersiel, D., & Lamarche, F. (2011). Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, 44(8), 2505–2514. doi: 10.1016/j.foodres.2011.01.030.CrossRefGoogle Scholar
  44. Toews, R., & Wang, N. (2013). Physicochemical and functional properties of protein concentrates from pulses. Food Research International, 52(2), 445–451.CrossRefGoogle Scholar
  45. Tomoskozi, S., Lásztity, R., Haraszi, R., & Baticz, O. (2001). Isolation and study of the functional properties of pea proteins. Nahrung, 45(5), 399–401.CrossRefGoogle Scholar
  46. Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282–289.Google Scholar
  47. Tonon, R. V., Pedro, R. B., Grosso, C. R., & Hubinger, M. D. (2012). Microencapsulation of flaxseed oil by spray drying: Effect of oil load and type of wall material. Drying Technology, 30(13), 1491–1501.Google Scholar
  48. Wang, R., Tian, Z., & Chen, L. (2011). A novel process for microencapsulation of fish oil with barley protein. Food Research International, 44(9), 2735–2741. doi: 10.1016/j.foodres.2011.06.013.CrossRefGoogle Scholar
  49. Xu, Y. Y., Howes, T., Adhikari, B., & Bhandari, B. (2013). Effects of emulsification of fat on the surface tension of protein solutions and surface properties of the resultant spray-dried particles. Drying Technology, 31(16), 1939–1950. doi: 10.1080/07373937.2013.802331.CrossRefGoogle Scholar
  50. Yu, J., Ahmedna, M., & Goktepe, I. (2007). Peanut protein concentrate: production and functional properties as affected by processing. Food Chemistry, 103(1), 121–129. doi: 10.1016/j.foodchem.2006.08.012.CrossRefGoogle Scholar
  51. Zhang, T., Jiang, B., Mu, W., & Wang, Z. (2009). Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl. Food Hydrocolloids, 23(1), 146–152. doi: 10.1016/j.foodhyd.2007.12.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Poonam R. Bajaj
    • 1
  • Juming Tang
    • 1
  • Shyam S. Sablani
    • 1
    Email author
  1. 1.Department of Biological Systems EngineeringWashington State UniversityPullmanUSA

Personalised recommendations