Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology

Abstract

The aim of this study was to determine the combined effects of slightly acidic electrolyzed water [SAEW (pH range 5.0–6.5, oxidation–reduction potential 650–1000 mV, available chlorine concentration 10–80 mg/L)] containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound [US (37 kHz, 380 W)] using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 6–7 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.04–1.86 log reduction) and V. parahaemolyticus (1.02–1.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y = 6.15322 − 0.024732X 1 − 0.016486X 2 − 0.00015X 1 X 2 + 0.00024X 1 2 + 0.00007X 2 2) and V. parahaemolyticus (Y = 5.67649 − 0.042598X 1 − 0.014013X 2 + 0.00003X 1 X 2 + 0.00006X 1 2 + 0.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f; 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f; 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE; 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2; 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adair, C., Kilsby, D. C., & Whittall, P. T. (1989). Comparison of the School field (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiology, 6, 7–18.

    Article  Google Scholar 

  2. Anonymous. (2009). Fall shad. Food and the city, 44, 70–71.

    Google Scholar 

  3. Aouadhi, C., Smonin, H., Prévost, H., de Lamballerie, M., Maaroufi, A., & Mejri, S. (2013). Inactivation of Bacillus sporothermodurans LTIS27 spores by high hydrostatic pressureand moderate heat studied by response surface methodology. LWT - Food Science and Technology, 50, 50–56.

    CAS  Article  Google Scholar 

  4. Bari, M. L., Sabina, Y., & Isobe, S. (2003). Effectiveness of electrolyzed acidic water in killing Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on the surfaces of tomatoes. Journal of Food Protection, 66, 542–548.

    CAS  Google Scholar 

  5. Bover-Cid, S., Belletti, N., Garriga, M., & Aymerich, T. (2012). Response surface methodology to investigate the effect of high pressure processing on Salmonella inactivation on dry-cured ham. Food Research International, 45, 1111–1117.

    Article  Google Scholar 

  6. Ding, T., Rahman, S. M. E., & Oh, D. H. (2011). Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control, 22, 318–322.

    CAS  Article  Google Scholar 

  7. Dong, Q., Tu, K., Guo, L., Li, H., & Zhao, Y. (2007). Response surface model for prediction of growth paramerters from spores of Clostridium sporogenes under different experimental conditions. Food Microbiology, 24, 624–632.

    CAS  Article  Google Scholar 

  8. Drake, S. L., DePaola, A., & Jaykus, L. A. (2007). An overview of Vibrio vulnificus and Vibrio parahamolyticus. Comprehensive Reviews in Food Science and Food Safety, 6, 120–144.

    CAS  Article  Google Scholar 

  9. Eifert, J. D., Gennings, C., Carter, W. H., Duncan, S. E., & Hackney, C. R. (1996). Predictive model with improved statistical analysis of interactive factors affecting the growth of Staphylococcus aureus196E. Journal of Food Protection, 59, 608–614.

    Google Scholar 

  10. Fabrizio, K. A., & Cutter, C. N. (2003). Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. Journal of Food Protection, 66, 1379–1384.

    CAS  Google Scholar 

  11. Fernandez, P. S., George, M. S., Sills, C. C., & Peck, M. W. (1997). Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 37, 37–45.

    CAS  Article  Google Scholar 

  12. Gao, Y. L., Ju, X. R., Qiu, W. F., & Jiang, H. H. (2007). Investigation of the effects of food constituents on Bacillus subtilis reduction during highpressure and moderate temperature. Food Control, 8, 1250–1257.

    Article  Google Scholar 

  13. Gibson, A. M., Bratchell, N., & Roberts, T. A. (1988). Predicting microbial growth: Growth responses of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 6, 155–178.

    CAS  Article  Google Scholar 

  14. Han, Y., Floros, J. D., Linton, R. H., Nielsen, S. S., & Nelson, P. E. (2002). Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum) by ozone gas treatment. Journal of Food Science, 67, 1188–1199.

    CAS  Article  Google Scholar 

  15. Jin, S. S., Jin, Y. G., Yoon, K. S., Woo, G. J., Hwang, I. G., Bahk, G. J., & Oh, D. H. (2006). Predictive modeling of the growth and survival of Listeria monocytogenes using a response surface model. Food Science and Biotechnology, 15, 715–720.

    Google Scholar 

  16. Kim, Y. S., Park, I. S., Kim, A. Y., Choi, S. H., Lee, Y. J., Choi, H. C., Jeon, D. H., & Kim, H. I. (2008). Study on the safety evaluation management system of disinfectants and sanitizer. Journal of Food Hygiene and Safety, 3, 18–25.

    Google Scholar 

  17. Koivunen, J., & Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV radiation and combined chemical/UV treatments. Water Research, 39, 1519–1526.

    CAS  Article  Google Scholar 

  18. Korea MFDS (Ministry of Food and Drug Safety) (2013).Sesfood microbial standards. In: Korean food code (pp. 6-1-1).

  19. Korea MFDS (Ministry of Food and Drug Safety) (2014). A report of studies on hazardous microbiological safety management of seafood.

  20. Liao, L. B., Chen, W. M., & Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. Journal of Food Engineering, 78, 1326–1332.

    CAS  Article  Google Scholar 

  21. Liu, B. L., & Tzeng, Y. M. (1998). Optimization of growth medium for the production of spores from Bacillus thurngiensis using response surface methodology. Bioprocess Engineering, 18, 413–418.

    CAS  Google Scholar 

  22. Liu, I. F., Annamalai, T., Sutherland, J. J., & Tse-Dinh, Y. C. (2009). Hydroxyl radicals are involved in cell killing by the bacterial topoisomerase I cleavage complex. Journal of Bacteriology, 191, 5315–5319.

    CAS  Article  Google Scholar 

  23. McPherson, L. L. (1993). Understanding ORP’s in the disinfection process. Water Engineering and Management, 140, 29–31.

    Google Scholar 

  24. Ozer, N. P., & Demirci, A. (2006). Electrolyzed water treatment for decontamination of raw salmon inoculated with Escherichia coli O157:H7 and Listeria monocytogenes Scott A and response surface modeling. Journal of Food Engineering, 72, 234–241.

    Article  Google Scholar 

  25. Park, C. M., Hung, Y. C., & Brackett, R. E. (2002). Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. International Journal of Food Microbiology, 72, 77–83.

    CAS  Article  Google Scholar 

  26. Park, H., Hung, Y. C., & Chung, D. H. (2004). Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. International Journal of Food Microbiology, 91, 13–18.

    CAS  Article  Google Scholar 

  27. Park, S. Y., Seo, K. Y., & Ha, S. D. (2007). A response surface model based on absorbance data for the growth rates of Salmonella entericaserovarTyphimurium as a function of temperature, NaCl, and pH. Journal of Microbiology and Biotechnology, 17, 644–649.

    Google Scholar 

  28. Park, S. Y., Song, H. H., & Ha, S. D. (2014). Synergistic effects of NaOCl and ultrasound combination on the reduction of Escherichia coli and Bacillus cereus in raw laver. Foodborne Pathogens and Disease, 11, 373–378.

    CAS  Article  Google Scholar 

  29. Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87, 207–216.

    CAS  Article  Google Scholar 

  30. Quan, Y., Choi, K. D., Chung, D., & Shin, I. S. (2010). Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. International Journal of Food Microbiology, 136, 255–260.

    CAS  Article  Google Scholar 

  31. Rahman, S. M. E., Ding, T., & Oh, D. H. (2013). Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control, 30, 176–183.

    CAS  Article  Google Scholar 

  32. Ray, B. (2004). Indicators of bacterial pathogens. In B. Ray (Ed.), Fundamental food microbiology (3rd ed.). Washington, D.C.: CRC Press.

    Google Scholar 

  33. Reddy, P. R. M., Mrudula, S., Ramesh, B., Reddy, G., & Seenayya, G. (2000). Production of thermostablepullulanase by Clostridium thermosulfurogenes SV2 insolid-state fermentation: optimization of enzyme leaching conditions response surface methodology. Bioprocess Engineering, 23, 107–112.

    Article  Google Scholar 

  34. Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508.

    CAS  Article  Google Scholar 

  35. Sagong, H. G., Lee, S. Y., Chang, P. S., Heu, S., Ryu, S., Choi, Y. J., & Kang, D. H. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145, 287–292.

    Article  Google Scholar 

  36. Scouten, A. J., & Beuchat, L. R. (2002). Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds. Journal of Applied Microbiology, 92, 668–674.

    CAS  Article  Google Scholar 

  37. Seo, K. Y., Heo, S. K., Bae, D. H., Oh, D. H., & Ha, S. D. (2008). Growth characteristics of Enterobactersakazakii used to develop a predictive model. Food Science and Biotechnology, 17, 642–650.

    Google Scholar 

  38. Seymour, I. J., Burfoot, D., Smith, R. L., Cox, L., & Lockwood, A. (2002). Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology, 37, 547–557.

    CAS  Article  Google Scholar 

  39. Solberg, M., Buckalew, J. J., Chen, C. M., Schaffner, D. W., O’Neil, K., McDowell, J., Post, L. S., & Boderck, M. (1990). Microbiologicalsafety assurance system for food service facilities. Food Technology, 44, 68–73.

    Google Scholar 

  40. Su, Y. C., & Liu, C. (2007). Vibrio parahameolytius: a concern of seafood safety. Food Microbiology, 24, 549–558.

    Article  Google Scholar 

  41. Sutherland, J. P., Bayliss, A. J., & Roberts, T. A. (1994). Predictive modeling of growth of Staphylococcus aureus: the effects of temperature, pH, and sodium chloride. International Journal of Food Microbiology, 21, 217–236.

    CAS  Article  Google Scholar 

  42. Wang, J. J., Zhang, Z. H., Li, J. B., Lin, T., Pan, Y. J., & Zhao, Y. (2014). Modeling Vibrio parahaemolyticus inactivation by acidic electrolyzed water on cooked shrimp using response surface methodology. Food Control, 36, 273–279.

    CAS  Article  Google Scholar 

  43. Xie, J., Sun, X. H., Pan, Y. J., & Zhao, Y. (2012). Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp. Food Control, 23, 320–324.

    CAS  Article  Google Scholar 

  44. Zeng, X., Tang, W., Ye, G., Quyang, T., Tian, L., Ni, Y., & Li, P. (2010). Studies on disinfection mechanism of electrolyzed water on E .coli and Staphylococcus aureus. Journal of Food Science, 75, M253–M260.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a 2012 grant (12162KFDA012) from the Korean Food & Drug Administration for studies on hazardous microbes and microbiological safety management of seafood.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Do Ha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Ha, SD. Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology. Food Bioprocess Technol 8, 1762–1770 (2015). https://doi.org/10.1007/s11947-015-1512-1

Download citation

Keywords

  • Escherichia coli
  • Vibrio parahaemolyticus
  • Raw shad slice
  • Slightly acidic electrolyzed water
  • Ultrasound
  • Response surface model