Skip to main content
Log in

Microencapsulation of Extra Virgin Olive Oil by Spray Drying: Effect of Wall Materials Composition, Process Conditions, and Emulsification Method

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of the study was to investigate the microencapsulation of extra virgin olive oil by spray drying to increase its stability and application area. The effects of homogenization rate, pump rate, i.e., flow rate of feeding emulsion and wall materials composition on physical and chemical properties of microencapsulated extra virgin olive oil powder (MEVOP) were evaluated. Maltodextrin (MD) and whey protein isolate (WPI) were used as wall materials and microencapsulation was carried out in a laboratory type spray dryer. The MD:WPI ratio as mixture variable and pump and homogenization rates as process variables were arranged through D-optimal combined design. The optimum wall materials composition and microencapsulation process conditions were determined as follows: 92 % (db) MD, 7 % (db) WPI, and 1 % (db) Tween 20 as wall materials composition and 17,500 rpm and 22 % homogenization and pump rates, respectively. The results showed that the wall materials composition was the most effective independent variables on physical properties in terms of moisture content, water activity, bulk and particle properties of powder as well as microencapsulation efficiency and oxidation stability of MEVOP during converting liquid extra virgin olive oil to powder form. The effects of emulsification methods in terms of rotor-stator and ultrasonic homogenization on physical and chemical properties of MEVOP were also comparatively investigated in this study. The MEVOP produced by ultrasonic homogenization had smaller particle size and lower microencapsulation efficiency than that of rotor-stator homogenization method. But microcapsules obtained by ultrasonic homogenization had better oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6(6), 1561–1569.

    Article  CAS  Google Scholar 

  • AOAC. (1998). Official method of analysis (15th ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549–560.

    Article  CAS  Google Scholar 

  • Barbosa-Canovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing, and functionality. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Calvo, P., Hernandez, T., Lozano, M., & Gonzalez-Gomez, D. (2010). Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. European Journal of Lipid Science and Technology, 112, 852–858.

    Article  CAS  Google Scholar 

  • Calvo, P., Castano, A., Lozano, M., & Gonzalez-Gomez, D. (2012). Microencapsulation of refined olive oil: influence of capsule wall components and the addition of antioxidant additives on the shelf life and chemical alteration. Journal of the Science of Food and Agriculture, 92(13), 2689–2695.

    Article  CAS  Google Scholar 

  • Canselier, J. R., Delmas, H., Wilhelm, A. M., & Abismail, B. (2002). Ultrasound emulsification—an overview. Journal of Dispersion Science and Technology, 23(1–3), 333–349.

    Article  CAS  Google Scholar 

  • Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

    Article  CAS  Google Scholar 

  • Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering, 72, 163–168.

    CAS  Google Scholar 

  • Desai, K. G. H., & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361–1394.

    Article  CAS  Google Scholar 

  • Fernandes, B., Victoria, R., Vilela, B. S., & Alvarenga, B. D. (2013). Microencapsulation of rosemary essential oil: characterization of particles. Drying Technology, 31(11), 1245–1254.

    Article  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    CAS  Google Scholar 

  • Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473–482.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Application of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Göğüş, F., Özkaya, M. T., & Ötleş, S. (2009). Zeytinyağı. Eflatun Yayınevi: Ankara.

    Google Scholar 

  • Gracey, J. F., Collins, D. S., & Huey, R. (1999). Meat hygiene. London: Harcourt Brace.

    Google Scholar 

  • Heinzelmann, K., & Franke, K. (1999). Using freezing and drying techniques of emulsions for the microencapsulation of fish oil to improve oxidation stability. Colloids and Surfaces B: Biointerfaces, 12(3–6), 223–229.

    Article  CAS  Google Scholar 

  • Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Journal of Dairy Technology, 11(3), 137–144.

    Article  CAS  Google Scholar 

  • Holgado, F., Marquez-Ruiz, G., & Dobarganes, C. (2013). Influence of homogenisation conditions and drying method on physicochemical properties of dehydrated emulsions containing different solid components. International Journal of Food Science and Technology, 48(7), 1498–1508.

    Article  CAS  Google Scholar 

  • Hu, B., Nienow, A. W., & Pacek, A. W. (2003). The effect of sodium caseinate concentration and processing conditions on bubble sizes and their break-up and coalescence in turbulent, batch air/aqueous dispersions at atmospheric and elevated pressures. Colloids and Surfaces B: Biointerfaces, 31(1–4), 3–11.

    Article  CAS  Google Scholar 

  • Jaya, S., & Das, H. (2004). Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering, 63(2), 125–134.

    Article  Google Scholar 

  • Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205.

    Article  Google Scholar 

  • Kelly, G. M., O’Mahony, J. A., Kelly, A. L., & O’Callaghan, D. J. (2014). Physical characteristics of spray-dried dairy powders containing different vegetable oils. Journal of Food Engineering, 122, 122–129.

    Article  CAS  Google Scholar 

  • Klinkesorn, U., Sophanodora, P., Chinachoti, P., McClements, D., & Decker, E. A. (2005). Stability of spray-dried tuna oil emulsion encapsulated with two-layered interfacial membranes. Journal of Agricultural and Food Chemistry, 53(21), 8365–8371.

    Article  CAS  Google Scholar 

  • Koç, M., Koç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F., Susyal, G., & Bağdatlıoğlu, N. (2011). Physicochemical characterization of whole egg powder microencapsulated by spray drying. Drying Technology, 29(7), 780–788.

    Article  Google Scholar 

  • Koç, M., Koç, B., Güngör, Ö., & Kaymak-Ertekin, F. (2012). The effects of moisture on physical properties of spray-dried egg powder. Drying Technology, 30(6), 567–573.

    Article  Google Scholar 

  • Laohasongkram, K., Mahamaktudsanee, T., & Chaiwanichsiri, S. (2011). Microencapsulation of Macadamia oil by spray drying. Procedia Food Science, 1, 1660–1665.

    Article  CAS  Google Scholar 

  • Lim, H. K., Tan, C. P., Bakar, J., & Ng, S. P. (2012). Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) seed oil. Food and Bioprocess Technology, 5(4), 1220–1227.

    Article  CAS  Google Scholar 

  • Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5–6), 928–935.

    Article  CAS  Google Scholar 

  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release—a review. International Journal of Food Science and Technology, 41(1), 1–21.

    Article  CAS  Google Scholar 

  • Masters, K. (1991). Spray drying handbook. London: Longman Scientific and Technical.

    Google Scholar 

  • Murugesan, R., & Orsat, V. (2012). Spray drying for the production of nutraceutical ingredients—a review. Food and Bioprocess Technology, 5(1), 3–14.

    Article  Google Scholar 

  • Serfert, Y., Drusch, S., & Schwarz, K. (2009). Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry, 113(4), 1106–1112.

    Article  CAS  Google Scholar 

  • Sims, R. J. (1989). Spray dried emulsion. Develop Food Science, 19, 495–509.

    CAS  Google Scholar 

  • Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science and Emerging Technologies, 6(1), 107–114.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Zhou, J., Miskelly, G. M., Wibisono, R., & Wadhwaa, S. S. (2011). Stability of encapsulated olive oil in the presence of caffeic acid. Food Chemistry, 126(3), 1049–1056.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Wadhwa, S. S., & Waterhouse, G. I. (2013). Spray-drying microencapsulation of polyphenol bioactives: a comparative study using different natural fibre polymers as encapsulants. Food and Bioprocess Technology, 6(9), 2376–2388.

    Article  CAS  Google Scholar 

  • Teodoro, R. A. R., Fernandes, R. V. B., Botrel, D. A., Borges, S. V., & Souza, A. U. (2014). Characterization of microencapsulated rosemary essential oil and its antimicrobial effect on fresh dough. Food and Bioprocess Technology. doi:10.1007/s11947-014-1302-1.

    Google Scholar 

  • Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914.

    Article  CAS  Google Scholar 

  • Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31(12), 1362–1373.

    Article  CAS  Google Scholar 

  • Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordannaud, C., Payrad-Maillard, M. N., & Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science and Emerging Technologies, 6(1), 29–35.

    Article  CAS  Google Scholar 

  • Turkish Food Codex, Notification of olive oil and pomace oil, Notified no: 2010–35

  • Tyagi, V. V., Kaushik, S. C., Tyagi, S. K., & Akiyama, T. (2011). Development of phase change materials based microencapsulated technology for buildings: a review. Renewable and Sustainable Energy Reviews, 15(2), 1373–1391.

    Article  CAS  Google Scholar 

  • Yorulmaz, A., Tekin, A., & Turan, S. (2011). Improving olive oil quality with double protection: destoning and malaxation in nitrogen atmosphere. European Journal of Lipid Science and Technology, 113(5), 637–643.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge TUBITAK-TOVAG (Project Number: 111 O 345), Ege University, Council of Scientific Research Projects (Project Number: BAP 2010/MÜH/011) and EBILTEM (Project Number: 12-BIL-018) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen Kaymak Ertekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, M., Güngör, Ö., Zungur, A. et al. Microencapsulation of Extra Virgin Olive Oil by Spray Drying: Effect of Wall Materials Composition, Process Conditions, and Emulsification Method. Food Bioprocess Technol 8, 301–318 (2015). https://doi.org/10.1007/s11947-014-1404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1404-9

Keywords

Navigation