Skip to main content
Log in

Recovery of Astaxanthin from Shrimp Cooking Wastewater: Optimization of Astaxanthin Extraction by Response Surface Methodology and Kinetic Studies

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A protein and astaxanthin-concentrated fraction (R f) can be recovered from shrimp cooking wastewater by ultrafiltration at 300 kDa, indicating that astaxanthin is somehow associated to membrane-retained proteins. Response surface analysis showed that astaxanthin can be extracted from R f using sunflower oil (3:1 v/v) under milder conditions (T < 40 °C) than directly from shrimp exoskeleton. Modeling astaxanthin extraction kinetics at 30 °C revealed that the process is a consequence of both mass transfer and hydrogen bonding between astaxanthin and oil. The freeze-dried concentrate (FR f ) showed two-phase extraction profiles with a much faster pigment recovery observed at 30 °C compared to the liquid form (R f). The best yields of astaxanthin extraction were not further improved after hydrolysis with alcalase at 45 °C for 30 min (HR f ), although higher yields were obtained when both R f and LR f were extracted in the presence of 200 mg/L butylated hydroxyanisole or ethoxyquin. Astaxanthin from this shrimp by-product has low thermal stability in oil at high temperatures (60 and 70 °C), suggesting the carotenoid is mainly free as a result of the cooking process and not bounded to proteins or lipids as it occurs in its natural form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afonso, M. D., Ferrer, J., & Bórquez, R. (2004). An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends in Food Science and Technology, 15(10), 506–512.

    Article  CAS  Google Scholar 

  • Akhnazarova, S. L., & Kafarov, V. V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow: MIR.

    Google Scholar 

  • Amado, I. R., Vázquez, J. A., González, M. P., & Murado, M. A. (2013). Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochemical Engineering Journal, 76, 43–54.

    Article  CAS  Google Scholar 

  • Armenta-López, R., Guerrero, I. L., & Huerta, S. (2002). Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. Journal of Food Science, 67(3), 1002–1006.

    Article  Google Scholar 

  • Bernfeld, P. (1951). Enzymes of starch degradation and synthesis. Advances in Enzymology, 12, 379–427.

    CAS  Google Scholar 

  • Bi, W., Tian, M., Zhou, J., & Row, K. H. (2010). Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. Journal of Chromatography B, 878(24), 2243–2248.

    Article  CAS  Google Scholar 

  • Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: design, innovation, and discovery. Hoboken: Wiley.

    Google Scholar 

  • Cano-López, B. K., Simpson, B. K., & Haard, N. F. (1987). Extraction of carotenoprotein from shrimp process wastes with the aid of trypsin from Atlantic cod. Journal of Food Science, 52(2), 503–504.

    Article  Google Scholar 

  • Chen, H., & Meyers, S. P. (1982). Extraction of astaxanthin pigment from crawfish waste using a soy oil process. Journal of Food Science, 47(3), 892–896.

    Article  CAS  Google Scholar 

  • Cros, S., Lignot, B., Jaouen, P., & Bourseau, P. (2006). Technical and economical evaluation of an integrated membrane process capable both to produce an aroma concentrate and to reject clean water from shrimp cooking juices. Journal of Food Engineering, 77(3), 379–471.

    Article  Google Scholar 

  • De Holanda, H. D., & Netto, F. M. (2006). Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. Journal of Food Science, 71(5), C298–C303.

    Article  Google Scholar 

  • Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74(6), 1163–1174.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • European Union. Regulation (EC/No 1831/2003) on additives for use in animal nutrition. (2003). Official Journal L 268, 29–43

  • Handayani, A. D., Sutrisno, Indraswati, N., & Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: studies of extraction kinetics and thermodynamic. Bioresource Technology, 99(10), 4414–4419.

    Article  CAS  Google Scholar 

  • Havilah, E. J., Wallis, D. M., Morris, R., & Woolnough, J. A. (1977). A micro-colorimetric method for determination of ammonia in Kjeldahl digests with a manual spectrophotometer. Laboratory Practice, 26, 545–547.

    CAS  Google Scholar 

  • Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2007). Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innovative Food Science and Emerging Technologies, 8, 407–412.

    Article  Google Scholar 

  • Liu, H., Li, P., Wang, G., Yu, H., Zeng, Z., & Yang, D. (2012). Optimization for extraction of astaxanthin from shrimp shell using response surface method. Advanced Materials Research, 396–398, 609–613.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Science, 67, 771–783.

    Article  CAS  Google Scholar 

  • Mazzola, P. G., Lopes, A. M., Hasmann, F. A., Jozala, A. F., Penna, T. C. V., Magalhaes, P. O., et al. (2008). Liquid-liquid extraction of biomolecules: an overview and update of the main techniques. Journal of Chemical Technology & Biotechnology, 83(2), 143–157.

    Article  CAS  Google Scholar 

  • Mezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., & Ferreira, S. R. S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration. Talanta, 85(3), 1383–1391.

    Article  CAS  Google Scholar 

  • Murado, M. A., González, M. P., & Vázquez, J. A. (2009). Recovery of proteolytic and collagenolytic activities from viscera by-products of rayfish (Raja clavata). Marine Drugs, 7(4), 803–815.

    Article  CAS  Google Scholar 

  • Murado, M. A., Fraguas, J., Montemayor, M. I., Vázquez, J. A., & González, P. (2010). Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochemical Engineering Journal, 49(1), 126–132.

    Article  CAS  Google Scholar 

  • Pérez-Santín, E., Calvo, M. M., López-Caballero, M. E., Montero, P., & Gómez-Guillén, M. C. (2013). Compositional properties and bioactive potential of waste material from shrimp cooking juice. LWT - Food Science and Technology, 54(1), 87–94.

    Article  Google Scholar 

  • Pu, J., Bechtel, P. J., & Sathivel, S. (2010). Extraction of shrimp astaxanthin with flaxseed oil: effects on lipid oxidation and astaxanthin degradation rates. Biosystems Engineering, 107(4), 364–371.

    Article  Google Scholar 

  • Rodríguez-Sáiz, M., de la Fuente, J. L., & Barredo, J. L. (2010). Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Applied Microbiology and Biotechnology, 88(3), 645–658.

    Article  Google Scholar 

  • Sachindra, N. M., & Bhaskar, N. (2008). In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresource Technology, 99(18), 9013–9016.

    Article  CAS  Google Scholar 

  • Sachindra, N. M., & Mahendrakar, N. S. (2005). Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresource Technology, 96(10), 1195–1200.

    Article  CAS  Google Scholar 

  • Sachindra, N. M., Bhaskar, N., & Mahendrakar, N. S. (2006). Recovery of carotenoids from shrimp waste in organic solvents. Waste Management, 26(10), 1092–1098.

    Article  CAS  Google Scholar 

  • Simpson, B. K., & Haard, N. F. (1985). The use of proteolytic enzymes to extract carotenoproteins from shrimp processing wastes. Journal of Applied Biochemistry, 7, 212–222.

    CAS  Google Scholar 

  • Sowmya, R., Rathinaraj, K., & Sachindra, N. M. (2011). An autolytic process for recovery of antioxidant activity rich carotenoprotein from shrimp heads. Marine Biotechnology, 13(5), 918–927.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis. Journal of the Fisheries Research Board of Canada, 167, 57–62.

    Google Scholar 

  • Vandajon, L., Cros, S., Jaouen, P., Quéméneur, F., & Bourseau, P. (2002). Recovery by nanofiltration and reverse osmosis of marine flavours from seafood cooking waters. Desalination, 144, 379–385.

    Article  Google Scholar 

  • Velu, C. S., Czeczuga, B., & Munuswamy, N. (2003). Carotenoprotein complexes in entomostracan crustaceans (Streptocephalus dichotomus and Moina micrura). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(1), 35–42.

    Article  CAS  Google Scholar 

  • Yang, X., Zhang, Z., Zheng, Q., Zu, T., & Shu, Y. (2013). Optimization of supercritical CO2 extraction of astaxanthin from pacific white shrimp (Litopenaeus vannamei) using response surface methodology. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(SUPPL1), 294–300.

    Google Scholar 

  • Zhu, T., & Row, K. H. (2013). Extraction of astaxanthin from shrimp waste using response surface methodology and a new hybrid organic-inorganic monolith. Separation Science and Technology, 48(10), 1510–1517.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dalva Martínez from Bajamar Séptima, Pescanova Group (A Coruña, Galicia, Spain) for providing the fresh shrimp cooking wastewater. Bajamar Séptima (Contract No. 20090910 co-financed by the Centre for Industrial Technological Development (CDTI)) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rodríguez Amado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amado, I.R., Vázquez, J.A., Murado, M.A. et al. Recovery of Astaxanthin from Shrimp Cooking Wastewater: Optimization of Astaxanthin Extraction by Response Surface Methodology and Kinetic Studies. Food Bioprocess Technol 8, 371–381 (2015). https://doi.org/10.1007/s11947-014-1403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1403-x

Keywords

Navigation