Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin

Abstract

Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CS:

Coffee silverskin

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DSC:

Differential scanning calorimetry

EA:

Emulsifying activity

ES:

Emulsion stability

FRAP:

Ferric reducing antioxidant power

FTIR:

Fourier transform infrared spectroscopy

ICP-AES:

Inductively coupled plasma atomic emission spectrometry

IDF:

Insoluble dietary fiber

ICDD:

International Centre for Diffraction Data

OHC:

Oil holding capacity

SEM:

Scanning electron microscopy

SDF:

Soluble dietary fiber

SBET :

Specific surface area

SCG:

Spent coffee grounds

TGA:

Thermogravimetric analyses

TDF:

Total dietary fiber

TE:

Trolox equivalents

WHC:

Water holding capacity

XRD:

X-ray diffraction

References

  1. Ao, C., Higa, T., Khanh, T. D., Upadhyay, A., & Tawata, S. (2011). Antioxidant phenolic compounds from Smilax sebeana Miq. LWT - Food Science and Technology, 44(7), 1681–1686.

    Article  CAS  Google Scholar 

  2. Arya, M., & Rao, L. J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47(1), 51–67.

    Article  CAS  Google Scholar 

  3. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380.

    Article  CAS  Google Scholar 

  4. Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., & Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287–295.

    Article  CAS  Google Scholar 

  5. Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A., & Fogliano, V. (2004). Characterization of a new potential functional ingredient: Coffee silverskin. Journal of Agricultural and Food Chemistry, 52(5), 1338–1343.

    Article  CAS  Google Scholar 

  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  7. Chau, C.-F., Cheung, P. C. K., & Wong, Y.-S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500–2503.

    Article  CAS  Google Scholar 

  8. Cummings, J. H., Branch, W., Jenkins, D. J. A., Southgate, D. A. T., Houston, H., & James, W. P. T. (1978). Colonic response to dietary fiber from carrot, cabbage, apple, bran, and guar gum. The Lancet, 1(8054), 5–9.

    Article  CAS  Google Scholar 

  9. Femenia, A., Lefebvre, A.-C., Thebaudin, J.-Y., Robertson, J. A., & Bourgeois, C.-M. (1997). Physical and sensory properties of model foods supplemented with cauliflower fiber. Journal of Food Science, 62(4), 635–639.

    Article  CAS  Google Scholar 

  10. Figueiró, S. D., Góes, J. C., Moreira, R. A., & Sombra, A. S. B. (2004). On the physic-chemical and dieletric properties of glutaraldehyde crosslinked galactomannan—Collagen films. Carbohydrate Polymers, 56(3), 313–320.

    Article  Google Scholar 

  11. Horwitz, W., & Latimer, G. W., Jr. (2005). Official methods of analysis of AOAC International (18th ed.). Gaithersburg, Maryland, USA: AOAC International.

    Google Scholar 

  12. Kemsley, E. K., Ruault, S., & Wilson, R. H. (1995). Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy. Food Chemistry, 54(3), 321–326.

    Article  CAS  Google Scholar 

  13. Kuan, Y.-H., & Liong, M.-T. (2008). Chemical and physicochemical characterization of agrowaste fibrous materials and residues. Journal of Agricultural and Food Chemistry, 56(19), 9252–9257.

    Article  CAS  Google Scholar 

  14. Kuan, C.-Y., Yuen, K.-H., Bhat, R., & Liong, M.-T. (2011). Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Research International, 44(9), 2822–2829.

    Article  CAS  Google Scholar 

  15. Machado, E. M. S., Rodriguez-Jasso, R. M., Teixeira, J. A., & Mussatto, S. I. (2012). Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochemical Engineering Journal, 60, 87–90.

    Article  CAS  Google Scholar 

  16. Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167.

    Article  CAS  Google Scholar 

  17. Maydata, A. G. (2002). Café, antioxidantes y protección a la salud. Medisan, 6(4), 72–81.

    Google Scholar 

  18. Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158.

    Article  CAS  Google Scholar 

  19. Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168(3), 1157–1162.

    Article  CAS  Google Scholar 

  20. Murthy, P. S., & Naidu, M. M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3), 897–903.

    Article  CAS  Google Scholar 

  21. Mussatto, S. I., Ballesteros, L. F., Martins, S., Maltos, D. A. F., Aguilar, C. N., & Teixeira, J. A. (2013). Maximization of fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus under solid-state fermentation conditions. Food and Bioprocess Technology, 6(8), 2128–2134.

    Article  CAS  Google Scholar 

  22. Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011a). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173–179.

    Article  Google Scholar 

  23. Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011b). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374.

    Article  CAS  Google Scholar 

  24. Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450–2457.

    Article  CAS  Google Scholar 

  25. Mussatto, S. I., Machado, E. M. S., Carneiro, L. M., & Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763–768.

    Article  CAS  Google Scholar 

  26. Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011c). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661–672.

    Article  CAS  Google Scholar 

  27. Mussatto, S. I., & Roberto, I. C. (2006). Chemical characterization and liberation of pentose sugars from brewer's spent grain. Journal of Chemical Technology & Biotechnology, 81(3), 268–274.

    Article  CAS  Google Scholar 

  28. Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53(1), 154–157.

    Article  CAS  Google Scholar 

  29. Paradkar, M. M., & Irudayaraj, J. (2002). Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78(2), 261–266.

    Article  CAS  Google Scholar 

  30. Pourfarzad, A., Mahdavian-Mehr, H., & Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT - Food Science and Technology, 50(2), 599–606.

    Article  CAS  Google Scholar 

  31. Ragauskas, A. J., & Huang, F. (2013). Chemical pretreatment techniques for biofuels and biorefineries from softwood. In Z. Fang (Ed.), Pretreatment techniques for biofuels and biorefineries. Berlin: Springer.

    Google Scholar 

  32. Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563–567.

    Article  CAS  Google Scholar 

  33. Ravindranath, R., Yousuf Ali Khan, R., Oby Reddy, T., Thirumala Rao, S. D., & Reddy, B. R. (1972). Composition and characteristics of Indian coffee bean, spent ground and oil. Journal of the Science of Food and Agriculture, 23(3), 307–310.

    Article  CAS  Google Scholar 

  34. Reis, N., Franca, A. S., & Oliveira, L. S. (2013). Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT - Food Science and Technology, 50(2), 715–722.

    Article  CAS  Google Scholar 

  35. Ribeiro, J. S., Salva, T. J., & Ferreira, M. M. C. (2010). Chemometric studies for quality control of processed Brazilian coffees using DRIFTS. Journal of Food Quality, 33(2), 212–227.

    Article  CAS  Google Scholar 

  36. Rivera, W., Velasco, X., Gálvez, C., Rincón, C., Rosales, A., & Arango, P. (2011). Effect of the roasting process on glass transition and phase transition of Colombian Arabic coffee beans. Procedia Food Science, 1, 385–390.

    Article  CAS  Google Scholar 

  37. Roberto, I. C., Mussatto, S. I., & Rodrigues, R. C. L. B. (2003). Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products, 17(3), 171–176.

    Article  CAS  Google Scholar 

  38. Robertson, J. A., Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J. F. (2000). LWT - Food Science and Technology, 33(2), 72–79.

    Article  CAS  Google Scholar 

  39. Sampaio, A., Dragone, G., Vilanova, M., Oliveira, J. M., Teixeira, J. A., & Mussatto, S. I. (2013). Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT – Food Science and Technology, 54(2), 557–563.

    Article  CAS  Google Scholar 

  40. Sánchez-Zapata, E., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Álvarez, J. A. (2009). Preparation of dietary fiber powder from tiger nut (Cyperus esculentus) milk (“Horchata”) byproducts and its physicochemical properties. Journal of Agricultural and Food Chemistry, 57(17), 7719–7725.

    Article  Google Scholar 

  41. Silva, M. A., Nebra, S. A., Machado Silva, M. J., & Sanchez, C. G. (1998). The use of biomass residues in the Brazilian soluble coffee industry. Biomass and Bioenergy, 14(5–6), 457–467.

    Article  CAS  Google Scholar 

  42. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2010). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618.

  43. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619.

  44. Sperling, L. H. (2006). Introduction to physical polymer science (4th ed.). New Jersey: Wiley.

    Google Scholar 

  45. Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products, 27(2), 202–207.

    Article  CAS  Google Scholar 

  46. Sun, R. C., Sun, X. F., Fowler, P., & Tomkinson, J. (2002). Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Polymer Journal, 38(7), 1399–1407.

    Article  CAS  Google Scholar 

  47. Tiwari, U., & Cummins, E. (2011). Pulse foods: Processing, quality and nutraceutical applications (pp. 121–156). San Diego: Academic.

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Science and Technology Foundation of Portugal (FCT) through the grant SFRH/BD/80948/2011 and the Strategic Project PEst-OE/EQB/LA0023/2013. The authors also thank the Project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. Thanks are also given to Prof. José J.M. Órfão, from the Department of Chemical Engineering, Universidade do Porto (Portugal), for his assistance with the porosity analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Solange I. Mussatto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballesteros, L.F., Teixeira, J.A. & Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol 7, 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z

Download citation

Keywords

  • Spent coffee grounds
  • Coffee silverskin
  • Chemical composition
  • Functional properties
  • Structural characteristics