Food and Bioprocess Technology

, Volume 7, Issue 12, pp 3493–3503 | Cite as

Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin

  • Lina F. Ballesteros
  • José A. Teixeira
  • Solange I. MussattoEmail author
Original Paper


Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.


Spent coffee grounds Coffee silverskin Chemical composition Functional properties Structural characteristics 



Coffee silverskin




Differential scanning calorimetry


Emulsifying activity


Emulsion stability


Ferric reducing antioxidant power


Fourier transform infrared spectroscopy


Inductively coupled plasma atomic emission spectrometry


Insoluble dietary fiber


International Centre for Diffraction Data


Oil holding capacity


Scanning electron microscopy


Soluble dietary fiber


Specific surface area


Spent coffee grounds


Thermogravimetric analyses


Total dietary fiber


Trolox equivalents


Water holding capacity


X-ray diffraction



The authors acknowledge the financial support of the Science and Technology Foundation of Portugal (FCT) through the grant SFRH/BD/80948/2011 and the Strategic Project PEst-OE/EQB/LA0023/2013. The authors also thank the Project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. Thanks are also given to Prof. José J.M. Órfão, from the Department of Chemical Engineering, Universidade do Porto (Portugal), for his assistance with the porosity analyses.


  1. Ao, C., Higa, T., Khanh, T. D., Upadhyay, A., & Tawata, S. (2011). Antioxidant phenolic compounds from Smilax sebeana Miq. LWT - Food Science and Technology, 44(7), 1681–1686.CrossRefGoogle Scholar
  2. Arya, M., & Rao, L. J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47(1), 51–67.CrossRefGoogle Scholar
  3. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380.CrossRefGoogle Scholar
  4. Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., & Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287–295.CrossRefGoogle Scholar
  5. Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A., & Fogliano, V. (2004). Characterization of a new potential functional ingredient: Coffee silverskin. Journal of Agricultural and Food Chemistry, 52(5), 1338–1343.CrossRefGoogle Scholar
  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.CrossRefGoogle Scholar
  7. Chau, C.-F., Cheung, P. C. K., & Wong, Y.-S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500–2503.CrossRefGoogle Scholar
  8. Cummings, J. H., Branch, W., Jenkins, D. J. A., Southgate, D. A. T., Houston, H., & James, W. P. T. (1978). Colonic response to dietary fiber from carrot, cabbage, apple, bran, and guar gum. The Lancet, 1(8054), 5–9.CrossRefGoogle Scholar
  9. Femenia, A., Lefebvre, A.-C., Thebaudin, J.-Y., Robertson, J. A., & Bourgeois, C.-M. (1997). Physical and sensory properties of model foods supplemented with cauliflower fiber. Journal of Food Science, 62(4), 635–639.CrossRefGoogle Scholar
  10. Figueiró, S. D., Góes, J. C., Moreira, R. A., & Sombra, A. S. B. (2004). On the physic-chemical and dieletric properties of glutaraldehyde crosslinked galactomannan—Collagen films. Carbohydrate Polymers, 56(3), 313–320.CrossRefGoogle Scholar
  11. Horwitz, W., & Latimer, G. W., Jr. (2005). Official methods of analysis of AOAC International (18th ed.). Gaithersburg, Maryland, USA: AOAC International.Google Scholar
  12. Kemsley, E. K., Ruault, S., & Wilson, R. H. (1995). Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy. Food Chemistry, 54(3), 321–326.CrossRefGoogle Scholar
  13. Kuan, Y.-H., & Liong, M.-T. (2008). Chemical and physicochemical characterization of agrowaste fibrous materials and residues. Journal of Agricultural and Food Chemistry, 56(19), 9252–9257.CrossRefGoogle Scholar
  14. Kuan, C.-Y., Yuen, K.-H., Bhat, R., & Liong, M.-T. (2011). Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Research International, 44(9), 2822–2829.CrossRefGoogle Scholar
  15. Machado, E. M. S., Rodriguez-Jasso, R. M., Teixeira, J. A., & Mussatto, S. I. (2012). Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochemical Engineering Journal, 60, 87–90.CrossRefGoogle Scholar
  16. Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167.CrossRefGoogle Scholar
  17. Maydata, A. G. (2002). Café, antioxidantes y protección a la salud. Medisan, 6(4), 72–81.Google Scholar
  18. Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158.CrossRefGoogle Scholar
  19. Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168(3), 1157–1162.CrossRefGoogle Scholar
  20. Murthy, P. S., & Naidu, M. M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3), 897–903.CrossRefGoogle Scholar
  21. Mussatto, S. I., Ballesteros, L. F., Martins, S., Maltos, D. A. F., Aguilar, C. N., & Teixeira, J. A. (2013). Maximization of fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus under solid-state fermentation conditions. Food and Bioprocess Technology, 6(8), 2128–2134.CrossRefGoogle Scholar
  22. Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011a). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173–179.CrossRefGoogle Scholar
  23. Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011b). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374.CrossRefGoogle Scholar
  24. Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450–2457.CrossRefGoogle Scholar
  25. Mussatto, S. I., Machado, E. M. S., Carneiro, L. M., & Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763–768.CrossRefGoogle Scholar
  26. Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011c). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661–672.CrossRefGoogle Scholar
  27. Mussatto, S. I., & Roberto, I. C. (2006). Chemical characterization and liberation of pentose sugars from brewer's spent grain. Journal of Chemical Technology & Biotechnology, 81(3), 268–274.CrossRefGoogle Scholar
  28. Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53(1), 154–157.CrossRefGoogle Scholar
  29. Paradkar, M. M., & Irudayaraj, J. (2002). Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78(2), 261–266.CrossRefGoogle Scholar
  30. Pourfarzad, A., Mahdavian-Mehr, H., & Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT - Food Science and Technology, 50(2), 599–606.CrossRefGoogle Scholar
  31. Ragauskas, A. J., & Huang, F. (2013). Chemical pretreatment techniques for biofuels and biorefineries from softwood. In Z. Fang (Ed.), Pretreatment techniques for biofuels and biorefineries. Berlin: Springer.Google Scholar
  32. Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563–567.CrossRefGoogle Scholar
  33. Ravindranath, R., Yousuf Ali Khan, R., Oby Reddy, T., Thirumala Rao, S. D., & Reddy, B. R. (1972). Composition and characteristics of Indian coffee bean, spent ground and oil. Journal of the Science of Food and Agriculture, 23(3), 307–310.CrossRefGoogle Scholar
  34. Reis, N., Franca, A. S., & Oliveira, L. S. (2013). Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT - Food Science and Technology, 50(2), 715–722.CrossRefGoogle Scholar
  35. Ribeiro, J. S., Salva, T. J., & Ferreira, M. M. C. (2010). Chemometric studies for quality control of processed Brazilian coffees using DRIFTS. Journal of Food Quality, 33(2), 212–227.CrossRefGoogle Scholar
  36. Rivera, W., Velasco, X., Gálvez, C., Rincón, C., Rosales, A., & Arango, P. (2011). Effect of the roasting process on glass transition and phase transition of Colombian Arabic coffee beans. Procedia Food Science, 1, 385–390.CrossRefGoogle Scholar
  37. Roberto, I. C., Mussatto, S. I., & Rodrigues, R. C. L. B. (2003). Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products, 17(3), 171–176.CrossRefGoogle Scholar
  38. Robertson, J. A., Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J. F. (2000). LWT - Food Science and Technology, 33(2), 72–79.CrossRefGoogle Scholar
  39. Sampaio, A., Dragone, G., Vilanova, M., Oliveira, J. M., Teixeira, J. A., & Mussatto, S. I. (2013). Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT – Food Science and Technology, 54(2), 557–563.CrossRefGoogle Scholar
  40. Sánchez-Zapata, E., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Álvarez, J. A. (2009). Preparation of dietary fiber powder from tiger nut (Cyperus esculentus) milk (“Horchata”) byproducts and its physicochemical properties. Journal of Agricultural and Food Chemistry, 57(17), 7719–7725.CrossRefGoogle Scholar
  41. Silva, M. A., Nebra, S. A., Machado Silva, M. J., & Sanchez, C. G. (1998). The use of biomass residues in the Brazilian soluble coffee industry. Biomass and Bioenergy, 14(5–6), 457–467.CrossRefGoogle Scholar
  42. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2010). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618.Google Scholar
  43. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619.Google Scholar
  44. Sperling, L. H. (2006). Introduction to physical polymer science (4th ed.). New Jersey: Wiley.Google Scholar
  45. Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products, 27(2), 202–207.CrossRefGoogle Scholar
  46. Sun, R. C., Sun, X. F., Fowler, P., & Tomkinson, J. (2002). Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Polymer Journal, 38(7), 1399–1407.CrossRefGoogle Scholar
  47. Tiwari, U., & Cummins, E. (2011). Pulse foods: Processing, quality and nutraceutical applications (pp. 121–156). San Diego: Academic.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lina F. Ballesteros
    • 1
  • José A. Teixeira
    • 1
  • Solange I. Mussatto
    • 1
    Email author
  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations