Skip to main content

Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs

Abstract

The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abad, E., Zampolli, S., Marco, S., Scorzoni, A., Mazzolai, B., Juarros, A., et al. (2007). Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensors and Actuators B-Chemical, 127, 2–7. doi:10.1016/j.snb.2007.07.007.

    Article  CAS  Google Scholar 

  • Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42, 252–256. doi:10.1007/s002840010213.

    CAS  Google Scholar 

  • Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22, 469–483. doi:10.1145/235815.235821.

    Article  Google Scholar 

  • Barreiro, P., Correa, E.C., Arranz, F.J., Diezma, B., Ruiz-García, L., Villarroel, et al. (2010). Smart sensing applications in agriculture and food. In I. N. Y. Nova (Ed.), Smart sensors: Technology, developments and applications. Science Publishers.

  • Bede-Wegner, H., Bendig, I., W. H., R. W. (1997). Volatile compounds associated with the over-fermented flavour defect., 17th International Scientific Colloqium on Coffee, Association Scientifique Internationale du Café (ASIC), Nairobi. pp. 176–182.

  • Di Gennaro, S. F., Matese, A., Primicerio, J., Genesio, L., Sabatini, F., Di Blasi, S., et al. (2013). Wireless real-time monitoring of malolactic fermentation in wine barrels: the wireless sensor bung system. Australian Journal of Grape and Wine Research, 19, 20–24. doi:10.1111/ajgw.12006.

    Article  Google Scholar 

  • Eckmann, J. P., & Ruelle, D. (1985). Ergodic-theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656. doi:10.1103/RevModPhys.57.617.

    Article  CAS  Google Scholar 

  • Esteban-Diez, I., Gonzalez-Saiz, J. M., & Pizarro, C. (2004). Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Analytica Chimica Acta, 525, 171–182. doi:10.1016/j.aca.2004.08.057.

    Article  CAS  Google Scholar 

  • Garcia, R., Arriola, D., Dearriola, M. C., Deporres, E., & Rolz, C. (1991). Characterization of coffee pectins. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 24, 125–129.

    CAS  Google Scholar 

  • Garcia, M. R., Vilas, C., Banga, J. R., & Alonso, A. A. (2007). Optimal field reconstruction of distributed process systems from partial measurements. Industrial & Engineering Chemistry Research, 46, 530–539. doi:10.1021/ie0604167.

    Article  CAS  Google Scholar 

  • Huang, B., Yan, G., Zan, P., & Li, Q. (2009). Study on gastric interdigestive pressure activity based on phase space reconstruction and FastICA algorithm. Medical Engineering & Physics, 31, 320–327. doi:10.1016/j.medengphy.2008.04.017.

    Article  Google Scholar 

  • Illy, A., & Viani, R. (2005). Espresso coffee: the chemistry of quality. U.K.: Academic Press Limited.

    Google Scholar 

  • Jackels, S. C., & Jackels, C. F. (2005). Characterization of the coffee mucilage fermentation process using chemical indicators: a field study in Nicaragua. Journal of Food Science, 70, C321–C325.

    Article  CAS  Google Scholar 

  • Jedermann, R., Ruiz-Garcia, L., & Lang, W. (2009). Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation. Computers and Electronics in Agriculture, 65, 145–154. doi:10.1016/j.compag.2008.08.006.

    Article  Google Scholar 

  • Jedermann, R., Geyer, M., Praeger, U., & Lang, W. (2013). Sea transport of bananas in containers—parameter identification for a temperature model. Journal of Food Engineering, 115, 330–338. doi:10.1016/j.jfoodeng.2012.10.039.

    Article  Google Scholar 

  • Jiménez-Ariza, T., Correa, E. C., Diezma, B., Silveira, A. C., Zócalo, A. C., Arranz, F. J., et al. (2013). The phase space as a new representation of the dynamical behaviour of temperature and enthalpy in a reefer monitored with a multidistributed sensors network. Food and Bioprocess Technology. doi:10.1007/s11947-013-1191-8. In press.

    Google Scholar 

  • Lang, W., Jedermann, R., Mrugala, D., Jabbari, A., Krieg-Brueckner, B., & Schill, K. (2011). The “intelligent container”—a cognitive sensor network for transport management. Ieee Sensors Journal, 11, 688–698. doi:10.1109/jsen.2010.2060480.

    Article  Google Scholar 

  • Lopez, C.L., Bautista, E., Moreno, E., Dentan, E. (1989). Factors related to the formation of ‘overfermented coffee beans’ during the wet processing method and storage of coffee. In A. S. I. D. C. (ASIC) (Ed.), 13th, Paipa, Colombia. pp. 373–384.

  • Mancha Agresti, P. D. C., Franca, A. S., Oliveira, L. S., & Augusti, R. (2008). Discrimination between defective and non-defective Brazilian coffee beans by their volatile profile. Food Chemistry, 106, 787–796. doi:10.1016/j.foodchem.2007.06.019.

    Article  CAS  Google Scholar 

  • Masoud, W., & Jespersen, L. (2006). Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. International Journal of Food Microbiology, 110, 291–296. doi:10.1016/j.ijfoodmicro.2006.04.030.

    Article  CAS  Google Scholar 

  • Maxwell, D., & Williamson, R. (2002). Wireless temperature monitoring in remote systems. Sensors, 19, 26–30.

    Google Scholar 

  • Murthy, P. S., & Naidu, M. M. (2011). Improvement of Robusta coffee fermentation with microbial enzymes. European Journal of Applied Sciences, 3, 130–139.

    Google Scholar 

  • Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4, 661–672. doi:10.1007/s11947-011-0565-z.

    Article  CAS  Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time-series. Physical Review Letters, 45, 712–716. doi:10.1103/PhysRevLett.45.712.

    Article  Google Scholar 

  • Peñuela-Martínez, A. E., Oliveros- Tascón, C. E., & Sanz-Uribe, J. R. (2010). Remoción del mucílago de café a través de fermentación natural. Cenicafé, 61, 159–173.

    Google Scholar 

  • Ranasinghe, D.C., Falkner, N.J.G., Chao, P., Hao, W. (2013). Wireless sensing platform for remote monitoring and control of wine fermentation. In M. Palaniswami, et al. (Eds.), 2013 Ieee Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. pp. 503–508.

  • Sainz, B., Antolin, J., Lopez-Coronado, M., & de Castro, C. (2013). A novel low-cost sensor prototype for monitoring temperature during wine fermentation in tanks. Sensors, 13, 2848–2861. doi:10.3390/s130302848.

    Article  Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical systems and turbulence. Lecture Notes in Mathematics., 898, 366–381. doi:10.1007/BFb0091924.

    Article  Google Scholar 

  • Vergara, A., Llobet, E., Ramirez, J. L., Ivanov, P., Fonseca, L., Zampolli, S., et al. (2007). An RFID reader with onboard sensing capability for monitoring fruit quality. Sensors and Actuators B-Chemical, 127, 143–149. doi:10.1016/j.snb.2007.07.107.

    Article  CAS  Google Scholar 

  • Wang, N., Zhang, N. Q., & Wang, M. H. (2006). Wireless sensors in agriculture and food industry—recent development and future perspective. Computers and Electronics in Agriculture, 50, 1–14. doi:10.1016/j.compag.2005.09.003.

    Article  CAS  Google Scholar 

  • Woelore, W.M. (1993). Optimum fermentation protocols for Arabica coffee under Ethiopian conditions. In A. s. i. d. c. (ASIC) (Ed.), 15th International Scientific Colloqium on Coffee, Montpellier. pp. 727–733.

Download references

Acknowledgments

This study was funded by the Spanish Government through the SMART-QC project (GL2008-05267-C03-03), UPM project CAFECOL (AL11-PID-30) and FRUTURA (109RT0383) International Net of CYTED. We also wish to thank the Technical University of Madrid and the International Campus of Excellence CEI Moncloa/UPM-UCM for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Correa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correa, E.C., Jiménez-Ariza, T., Díaz-Barcos, V. et al. Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food Bioprocess Technol 7, 3166–3174 (2014). https://doi.org/10.1007/s11947-014-1328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1328-4

Keywords

  • Temperature
  • WSN
  • Attractor
  • Control
  • Food quality
  • Dynamic behaviour