Abad, E., Zampolli, S., Marco, S., Scorzoni, A., Mazzolai, B., Juarros, A., et al. (2007). Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensors and Actuators B-Chemical, 127, 2–7. doi:10.1016/j.snb.2007.07.007.
Article
CAS
Google Scholar
Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42, 252–256. doi:10.1007/s002840010213.
CAS
Google Scholar
Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22, 469–483. doi:10.1145/235815.235821.
Article
Google Scholar
Barreiro, P., Correa, E.C., Arranz, F.J., Diezma, B., Ruiz-García, L., Villarroel, et al. (2010). Smart sensing applications in agriculture and food. In I. N. Y. Nova (Ed.), Smart sensors: Technology, developments and applications. Science Publishers.
Bede-Wegner, H., Bendig, I., W. H., R. W. (1997). Volatile compounds associated with the over-fermented flavour defect., 17th International Scientific Colloqium on Coffee, Association Scientifique Internationale du Café (ASIC), Nairobi. pp. 176–182.
Di Gennaro, S. F., Matese, A., Primicerio, J., Genesio, L., Sabatini, F., Di Blasi, S., et al. (2013). Wireless real-time monitoring of malolactic fermentation in wine barrels: the wireless sensor bung system. Australian Journal of Grape and Wine Research, 19, 20–24. doi:10.1111/ajgw.12006.
Article
Google Scholar
Eckmann, J. P., & Ruelle, D. (1985). Ergodic-theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656. doi:10.1103/RevModPhys.57.617.
Article
CAS
Google Scholar
Esteban-Diez, I., Gonzalez-Saiz, J. M., & Pizarro, C. (2004). Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Analytica Chimica Acta, 525, 171–182. doi:10.1016/j.aca.2004.08.057.
Article
CAS
Google Scholar
Garcia, R., Arriola, D., Dearriola, M. C., Deporres, E., & Rolz, C. (1991). Characterization of coffee pectins. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 24, 125–129.
CAS
Google Scholar
Garcia, M. R., Vilas, C., Banga, J. R., & Alonso, A. A. (2007). Optimal field reconstruction of distributed process systems from partial measurements. Industrial & Engineering Chemistry Research, 46, 530–539. doi:10.1021/ie0604167.
Article
CAS
Google Scholar
Huang, B., Yan, G., Zan, P., & Li, Q. (2009). Study on gastric interdigestive pressure activity based on phase space reconstruction and FastICA algorithm. Medical Engineering & Physics, 31, 320–327. doi:10.1016/j.medengphy.2008.04.017.
Article
Google Scholar
Illy, A., & Viani, R. (2005). Espresso coffee: the chemistry of quality. U.K.: Academic Press Limited.
Google Scholar
Jackels, S. C., & Jackels, C. F. (2005). Characterization of the coffee mucilage fermentation process using chemical indicators: a field study in Nicaragua. Journal of Food Science, 70, C321–C325.
Article
CAS
Google Scholar
Jedermann, R., Ruiz-Garcia, L., & Lang, W. (2009). Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation. Computers and Electronics in Agriculture, 65, 145–154. doi:10.1016/j.compag.2008.08.006.
Article
Google Scholar
Jedermann, R., Geyer, M., Praeger, U., & Lang, W. (2013). Sea transport of bananas in containers—parameter identification for a temperature model. Journal of Food Engineering, 115, 330–338. doi:10.1016/j.jfoodeng.2012.10.039.
Article
Google Scholar
Jiménez-Ariza, T., Correa, E. C., Diezma, B., Silveira, A. C., Zócalo, A. C., Arranz, F. J., et al. (2013). The phase space as a new representation of the dynamical behaviour of temperature and enthalpy in a reefer monitored with a multidistributed sensors network. Food and Bioprocess Technology. doi:10.1007/s11947-013-1191-8. In press.
Google Scholar
Lang, W., Jedermann, R., Mrugala, D., Jabbari, A., Krieg-Brueckner, B., & Schill, K. (2011). The “intelligent container”—a cognitive sensor network for transport management. Ieee Sensors Journal, 11, 688–698. doi:10.1109/jsen.2010.2060480.
Article
Google Scholar
Lopez, C.L., Bautista, E., Moreno, E., Dentan, E. (1989). Factors related to the formation of ‘overfermented coffee beans’ during the wet processing method and storage of coffee. In A. S. I. D. C. (ASIC) (Ed.), 13th, Paipa, Colombia. pp. 373–384.
Mancha Agresti, P. D. C., Franca, A. S., Oliveira, L. S., & Augusti, R. (2008). Discrimination between defective and non-defective Brazilian coffee beans by their volatile profile. Food Chemistry, 106, 787–796. doi:10.1016/j.foodchem.2007.06.019.
Article
CAS
Google Scholar
Masoud, W., & Jespersen, L. (2006). Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. International Journal of Food Microbiology, 110, 291–296. doi:10.1016/j.ijfoodmicro.2006.04.030.
Article
CAS
Google Scholar
Maxwell, D., & Williamson, R. (2002). Wireless temperature monitoring in remote systems. Sensors, 19, 26–30.
Google Scholar
Murthy, P. S., & Naidu, M. M. (2011). Improvement of Robusta coffee fermentation with microbial enzymes. European Journal of Applied Sciences, 3, 130–139.
Google Scholar
Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4, 661–672. doi:10.1007/s11947-011-0565-z.
Article
CAS
Google Scholar
Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time-series. Physical Review Letters, 45, 712–716. doi:10.1103/PhysRevLett.45.712.
Article
Google Scholar
Peñuela-Martínez, A. E., Oliveros- Tascón, C. E., & Sanz-Uribe, J. R. (2010). Remoción del mucílago de café a través de fermentación natural. Cenicafé, 61, 159–173.
Google Scholar
Ranasinghe, D.C., Falkner, N.J.G., Chao, P., Hao, W. (2013). Wireless sensing platform for remote monitoring and control of wine fermentation. In M. Palaniswami, et al. (Eds.), 2013 Ieee Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. pp. 503–508.
Sainz, B., Antolin, J., Lopez-Coronado, M., & de Castro, C. (2013). A novel low-cost sensor prototype for monitoring temperature during wine fermentation in tanks. Sensors, 13, 2848–2861. doi:10.3390/s130302848.
Article
Google Scholar
Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical systems and turbulence. Lecture Notes in Mathematics., 898, 366–381. doi:10.1007/BFb0091924.
Article
Google Scholar
Vergara, A., Llobet, E., Ramirez, J. L., Ivanov, P., Fonseca, L., Zampolli, S., et al. (2007). An RFID reader with onboard sensing capability for monitoring fruit quality. Sensors and Actuators B-Chemical, 127, 143–149. doi:10.1016/j.snb.2007.07.107.
Article
CAS
Google Scholar
Wang, N., Zhang, N. Q., & Wang, M. H. (2006). Wireless sensors in agriculture and food industry—recent development and future perspective. Computers and Electronics in Agriculture, 50, 1–14. doi:10.1016/j.compag.2005.09.003.
Article
CAS
Google Scholar
Woelore, W.M. (1993). Optimum fermentation protocols for Arabica coffee under Ethiopian conditions. In A. s. i. d. c. (ASIC) (Ed.), 15th International Scientific Colloqium on Coffee, Montpellier. pp. 727–733.