Skip to main content
Log in

Influence of Ultrasonication Parameters on Physical Characteristics of Olive Oil Model Emulsions Containing Xanthan

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ultrasonic emulsification of 20-wt.% o/w emulsions (pH 3.8) containing a food-grade emulsifier (whey protein isolate, WPI, 2.7 wt.%) and xanthan gum (XG, 0.25 wt.%) was performed. Time and amplitude of ultrasonic treatment changed in order to evaluate their influence on emulsion droplet size, viscosity, and stability (by multiple light scattering (MLS) profiles) during cold storage (10 days at 5 °C). Ultrasonic treatment duration changed from 1 to 4 min at constant amplitude of 70 %. Considering the amplitude, intervals of 40, 60, 80, and 100 % were chosen, for a constant time of 1 min. Similarly, time and amplitude conditions were used to treat solutions of XG of 1 wt.% and evaluate their influence on viscosity and how that was related to the stability of the emulsion. Increase in sonication time from 1 to 4 min led to a significant oil droplet size decrease from 1.14 to 0.89 μm (median droplet diameter). The viscosity of emulsions and XG solutions was highly influenced and considerably decreased with sonication time applied. At those conditions, an increase of backscattering was observed from 58.9 to 72.7 % after 10 days of storage, meaning that more stable emulsions, thinner and of smaller oil droplet size were produced. A similar trend was observed when the amplitude was increased, but droplet size and creaming were always greater than those noticed by changing the sonication time. However, the rate of viscosity, droplet size, and stability change was greater by increasing the amplitude rather than by changing the sonication time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansari, S. A., Matricardi, P., Di Meo, C., Alhaique, F., & Coviello, T. (2012). Evaluation of rheological properties and swelling behaviour of sonicated scleroglucan samples. Molecules, 17, 2283–2297.

    Article  CAS  Google Scholar 

  • Behrend, O., Ax, K., & Schubert, H. (2000). Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry, 7, 77–85.

    Article  CAS  Google Scholar 

  • Buron, H., Mengual, O., Meunier, G., Cayre, I., & Snabre, P. (2004). Optical characterization of concentrated dispersions: applications to laboratory analyses and on-line process monitoring and control. Polymer International, 53, 1205–1209.

    Article  CAS  Google Scholar 

  • Canselier, J. R., Delmas, H., Wilhelm, A. M., & Abismail, B. (2002). Ultrasound emulsification—an overview. Journal of Dispersion Science and Technology, 23, 333–349.

    Article  CAS  Google Scholar 

  • Casas, J. A., Mohedano, A. F., & Garcia-Ochoa, F. (2000). Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 80, 1722–1727.

    Article  CAS  Google Scholar 

  • Chemat, F., Grondin, I., Costes, P., Moutoussamy, L., Shum Cheong Sing, A., & Smadja, J. (2004). High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrasonics Sonochemistry, 11(5), 281–285.

    Article  CAS  Google Scholar 

  • Chendke, P. K., & Fogler, H. S. (1975). Macrosonics in industry: 4 Ultrasonic innovations in the food industry: From the laboratory to commercial production. Chemical processing. Ultrasonics, 13, 31–37.

    Article  CAS  Google Scholar 

  • Cucheval, A., & Chow, R. C. Y. (2008). A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 15, 916–920.

    Article  CAS  Google Scholar 

  • Denkova, P. S., Tcholakova, S., Denkov, N. D., Danov, K. D., Campbell, B., Shawl, C., & Kim, D. (2004). Evaluation of the precision of drop-size determination in oil/water emulsions by low-resolution NMR Spectroscopy. Langmuir, 20, 11402–11413.

    Article  CAS  Google Scholar 

  • Fameau, A. L., Ventureira, J., Novales, B., & Douliez, J. P. (2012). Foaming and emulsifying properties of fatty acids neutralized by tetrabutylammonium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403(5), 87–95.

    Article  CAS  Google Scholar 

  • Freitas, S., Hielscher, G., Merkle, H. P., & Gander, B. (2006). Continuous contact- and contamination-free ultrasonic emulsification. Ultrasonics Sonochemistry, 13(1), 76–85.

    Article  CAS  Google Scholar 

  • Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 15(4), 554–563.

    Article  CAS  Google Scholar 

  • Galazka, V. B., Dickinson, E., & Ledward, D. A. (1996). Effect of high pressure on the emulsifying behaviour of β -lactoglobulin. Food Hydrocolloids, 10, 213–219.

    Article  CAS  Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., Khodaiyan, F., & Razavi, S. H. (2012). Development of an optimal formulation for oxidative stability of walnut-beverage emulsions based on gum arabic and xanthan gum using response surface methodology. Carbohydrate Polymers, 87(2), 1611–1619.

    Article  CAS  Google Scholar 

  • Goodwin, D. J., Picout, D. R., Ross-Murphy, S. B., Holland, S. J., Martini, L. G., & Lawrence, M. J. (2011). Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydrate Polymers, 83(2), 843–851.

    Article  CAS  Google Scholar 

  • Huang, X., Kakuda, Y., & Cui, W. (2001). Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids, 15(4–6), 533–542.

    Article  CAS  Google Scholar 

  • Huck-Iriart, C., Álvarez-Cerimedo, S., Candal, R. J., & Herrera, M. L. (2011). Structures and stability of lipid emulsions formulated with sodium caseinate. Current Opinion in Colloid Interface Science, 16(5), 412–420.

    Article  CAS  Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22, 1191–1202.

    Article  CAS  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—a comparison. International Journal of Food Properties, 9(3), 475–485.

    Article  CAS  Google Scholar 

  • Jiménez, A., Beltrán, G., & Uceda, M. (2007). High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrasonics Sonochemistry, 14(6), 725–731.

    Article  Google Scholar 

  • Kasaai, M. R., Arul, J., & Charlet, G. (2008). Fragmentation of chitosan by ultrasonic irradiation. Ultrasonics Sonochemistry, 15(6), 1001–1008.

    Article  CAS  Google Scholar 

  • Kang, K. S., & Pettitt, D. J. (1993). Xanthan, gellan, welan, rhamsam. In R. L. Whistler & J. N. BeMiller (Eds.), Industrial gums: polysaccharides and their derivatives (3rd ed., pp. 341–371). New York, USA: Academic Press.

    Chapter  Google Scholar 

  • Karaman, S., Tahsin Yilmaz, M., Ertugay, M. F., Baslar, M., & Kayacier, A. (2012). Effect of ultrasound treatment on steady and dynamic shear properties of glucomannan based salep dispersions: optimization of amplitude level, sonication time and temperature using response surface methodology. Ultrasonics Sonochemistry, 19(4), 928–938.

    Article  CAS  Google Scholar 

  • Karbstein, H., & Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing Process Intensification, 34(3), 205–211.

    Article  CAS  Google Scholar 

  • Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9, 170–175.

    Article  CAS  Google Scholar 

  • Krstonošić, V., Dokić, L., Dokić, P., & Dapčević, T. (2009). Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, 23(8), 2212–2218.

    Article  Google Scholar 

  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., & Mazoyer, J. (2003). Emulsion stabilizing properties of pectin. Food Hydrocolloids, 17, 455–462.

    Article  CAS  Google Scholar 

  • Li, M. K., & Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil–water interface to form the initial droplet. Journal of Fluid Mechanics, 88, 499–512.

    Article  CAS  Google Scholar 

  • Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1), 192–197.

    Article  CAS  Google Scholar 

  • Lorimer, J. P., Mason, T. J., Cuthbert, T. C., & Brookfield, E. A. (1995). Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry, 2, 55–57.

    Article  Google Scholar 

  • Marcotte, M., Taherian, A. R., & Ramaswamy, H. S. (2001). Evaluation of rheological properties of selected salt enriched food hydrocolloids. Journal of Food Engineering, 48(2), 157–167.

    Article  Google Scholar 

  • McClements, D. J. (2005). Food emulsions: principles, practice, and techniques. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Mengual, O., Meunier, G., Cayre, I., Puech, K., & Snabre, P. (1999). Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 111–123.

    Article  CAS  Google Scholar 

  • Milas, M., Rinaudo, M., & Tinlands, B. (1986). Comparative depolymerization of xanthan gum by ultrasonic and enzymic treatments. Rheological and structural properties. Carbohydrate Polymers, 6, 95–107.

    Article  CAS  Google Scholar 

  • Moncada Reyes ML (2011) Influence of low sonication intensities at different temperatures on acid tolerance, bile tolerance, protease ativity, and growth of yogurt culture bacteria Lactobacillus delbrueckii spp. Bulgaricus and Streptococcus salivarius ssp. Thermophilus. Master Thesis. School of Animal Science, Louisiana State University, Louisiana, USA.

  • Muthukumaran, S., Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2006). Application of ultrasound in membrane separation processes: a Review. Reviews in Chemical Engineering, 22, 155–194.

    CAS  Google Scholar 

  • Olson, D. W., White, C. H., & Richter, R. L. (2004). Effect of pressure and fat content on particle sizes in microfluidized milk. Journal of Dairy Science, 87(10), 3217–3223.

    Article  CAS  Google Scholar 

  • Palazolo, G. G., Sorgentini, D. A., & Wagner, J. R. (2004). Emulsifying properties and surface behavior of native and denatured whey soy proteins in comparison with other proteins. Creaming stability of oil in-water emulsions. Journal of American Oil Chemists’ Society, 81(7), 625–632.

    Article  CAS  Google Scholar 

  • Palazolo, G. G., Sorgentini, D. A., & Wagner, J. R. (2005). Coalescence and flocculation in O/W emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocolloids, 19, 595–604.

    Article  CAS  Google Scholar 

  • Pizzino, A., Catte, M., Van Hecke, E., Salager, J. L., & Aubry, J. M. (2009). On-line light backscattering tracking of the transitional phase inversion of emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 338, 148–154.

    Article  CAS  Google Scholar 

  • Price, G. (1990). The use of ultrasound for the controlled degradation of polymer solutions. In T. J. Mason (Ed.), Advances in sonochemistry (pp. 231–287). Greenwich, CT: JAI Press.

    Google Scholar 

  • Rawle, A. (2002). The importance of particle sizing to the coatings industry. Advances in Colour Science and Technology, 5(1), 1–12.

    CAS  Google Scholar 

  • Relkin, P., & Sourdet, S. (2005). Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions. Food Hydrocolloids, 19, 503–51.

    Article  CAS  Google Scholar 

  • Santos, H. M., Lodeiro, C., & Capelo-Martinez, J.-L. (2009). The power of ultrasound. In J.-L. Capelo-Martinez (Ed.), Chemistry: analytical applications (pp. 1–16). KGaA, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  • Stellbrink, J., Abbas, B., Allgaier, J., Monkenbusch, M., Richter, D., Likos, C. N., Löwen, H., & Watzlawek, M. (1998). Structure and dynamics of star polymers. Progress Colloid Polymer Science, 28, 110–125.

    Google Scholar 

  • Striegel, A. M. (2003). Influence of chain architecture on the mechanochemical degradation of macromolecules. Journal of Biochemical and Biophysical Methods, 56, 117–139.

    Article  CAS  Google Scholar 

  • Surh, J., Decker, E. A., & McClements, D. J. (2006). Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids, 20(50), 607–618.

    Article  CAS  Google Scholar 

  • Syed Gulrez, K. H., Al-Assaf, S., Fang, Y., Phillips, G. O., & Gunning, A. P. (2012). Revisiting the conformation of xanthan and the effect of industrially relevant treatments. Carbohydrate Polymers, 90(3), 1235–1243.

    Article  Google Scholar 

  • Tang, S. Y., Manickam, S., Wei, T. K., & Nashiru, B. (2012). Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 19, 330–345.

    Article  CAS  Google Scholar 

  • Tang, S. Y., Shridharan, P., & Sivakumar, M. (2013). Impact of process parameters in the generation of novel aspirin nanoemulsions—Comparative studies between ultrasound cavitation and microfluidizer. Ultrasonics Sonochemistry, 20, 485–497.

    Article  CAS  Google Scholar 

  • Tayal, A., & Khan, S. A. (2000). Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules, 33, 9488–9493.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2010). Rheological properties of sonicated guar, xanthan and pectin dispersions. International Journal of Food Properties, 13, 223–233.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Grosso, C. R. F., Míriam, D., & Hubinger, M. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44, 282–289.

    Article  CAS  Google Scholar 

  • Vinod, V. T. P., & Sashidhar, R. B. (2009). Solution and conformational properties of gum kondagogu (Cochlospermum gossypium)—a natural product with immense potential as a food additive. Food Chemistry, 116(3), 686–692.

    Article  CAS  Google Scholar 

  • Walstra, P. (2003). Physical chemistry of foods. New York, USA: Marcel Dekker.

    Google Scholar 

  • Wasikiewicz, J. M., Yoshii, F., Nagasawa, N., Wach, R. A., & Mitomo, H. (2005). Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry, 73, 287–295.

    Article  CAS  Google Scholar 

  • Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1, 211–218.

    Article  CAS  Google Scholar 

  • Zhou, Y., & Shi, J. (2006). Effects of extracellular calcium on cell membrane resealing in sonoporation. Journal of Controlled Release, 126, 34–43.

    Article  Google Scholar 

  • Zisu, B., Bhaskaracharya, R., Ashokkumar, M., & Kentish, S. (2010). Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry, 17(6), 1075–1081.

    Article  CAS  Google Scholar 

  • Zúñiga, R. N., Skurtys, O., Osorio, F., José, M., Aguilera, J. M., & Pedreschi, F. (2013). Optical properties of emulsion-based hydroxypropyl methylcellulose (HPMC) films: effect of their microstructure. InsideFood Symposium, 90(2), 1147–1158.

    Google Scholar 

Download references

Acknowledgments

This research has been cofinanced by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

The authors would like to thank Arla Foods Hellas and Mr Andreas Andreou for kindly donating whey protein isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mandala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltsa, O., Gatsi, I., Yanniotis, S. et al. Influence of Ultrasonication Parameters on Physical Characteristics of Olive Oil Model Emulsions Containing Xanthan. Food Bioprocess Technol 7, 2038–2049 (2014). https://doi.org/10.1007/s11947-014-1266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1266-1

Keywords

Navigation