Skip to main content
Log in

Relationships Between Texture and Rheological Properties in Blanched Apple Slices (var. Granny Smith) Studied by Partial Least Squares Regression

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of steam blanching (90 or 150 s) on linear viscoelastic and compression properties, sensory texture, and micro- and ultrastructure of cut apple was analyzed. All apple samples showed a solid behavior (storage modulus G′ > loss modulus G″) dominating the viscoelastic response, but both dynamic modules were reduced due to processing. For blanched tissues, the instantaneous elastic compliance J 0 and the retarded compliances J 1 and J 2 increased and the steady-state viscosity decreased. Values of mechanical parameters and texture attributes (except cohesiveness) decreased for blanched tissues. Partial least squares regression analysis (PLS) technique was used to study how texture characteristics (dependent variables) were related to rheological properties (independent variables) of untreated and blanched apples. Sensory hardness and crispness were negatively related to J 0, J 1, and J 2 and positively correlated to G′ at intermediate and high frequencies (ω) and G″ at low frequencies. Sensory fracturability was positively correlated with G′ at ω = 0.1 1/s and G″ at ω = 100 1/s. Juiciness and sensory fracturability were positively correlated to instrumental hardness and area 1, and crispness and sensory hardness were positively related to instrumental fracturability. Structure differences (rupture of membranes, decrease in cell-to-cell contact, degradation of cell walls, changes in microfibril arrangements) could explain some changes observed in rheological properties and texture of blanched apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzamora SM, Cerrutti P, Guerrero S & López-Malo A (1995) Minimally processed fruits by combined methods. In Barbosa-Cánovas, Welti-Chanes (Eds.), Food preservation by moisture control: fundamentals and applications, pp. 463–492. Lancaster: Technomics.

  • Alzamora SM, Gerschenson LN, Vidales S & Nieto A (1997) Structural changes in the minimal processing of fruits: some effects of blanching and sugar impregnation. In Fito, Ortega-Rodríguez & Barbosa-Cánovas (Eds.). Food engineering 2000, pp. 117–140. New York: Chapman & Hall.

  • Alzamora, S. M., López-Malo, A., & Tapia, M. S. (2000). Overview. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 1–9). Gaithersburg: Aspen.

    Google Scholar 

  • Alzamora, S. M., Viollazs, P. E., Martínez, V. Y., Nieto, A. B., & Salvatori, D. M. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In B. Cánovas, G. López, W. Chanes, & P. Arias (Eds.), Food engineering: integrated approaches (pp. 133–214). New York: Springer.

    Google Scholar 

  • BeMiller, J. N., & Kumari, J. V. (1972). β-elimination of uronic acids: evidence for an ElcB mechanisms. Carbohydrate Research, 25, 419–28.

    Article  CAS  Google Scholar 

  • Bourne, M. C. (1978). Texture profile analysis. Food Technology, 32, 62–66.

    Google Scholar 

  • Calzada, J. F., & Peleg, M. (1978). Mechanical interpretation of compressive stress-strain relationships of solids foods. Journal of Food Science, 43, 1087–1092.

    Article  Google Scholar 

  • Chauvin, M. A., Younce, F., Ross, C., & Swanson, B. G. (2008). Standard scales for crispness, crackliness and crunchiness in dry and wet foods: relationship with acoustical determinations. Journal of Texture Studies, 39, 345–368.

    Article  Google Scholar 

  • Chiralt, A., Martínez-Navarrete, N., Martínez-Monzó, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes. Cryoprotectant effect. Journal of Food Engineering, 49, 129–135.

    Article  Google Scholar 

  • Civille, G. V., & Szczesniak, A. S. (1973). Guidelines to training a texture profile panel. Journal of Texture Studies, 4, 204–223.

    Article  Google Scholar 

  • D’Ambrogio de Argüeso, A. (1986). Manual de técnicas en histología vegetal. Buenos Aires, Argentina: Hemisferio Sur S.A.

    Google Scholar 

  • García Loredo, A. B., Guerrero, S. N., Gómez, P. L., & Alzamora, S. M. (2011). Relationships between rheological properties, texture and structure of apple (Granny Smith var.) affected by blanching and/or osmotic dehydration. Food Bioprocess and Technology, 6, 475–488.

    Article  Google Scholar 

  • García Loredo, A. B., Guerrero, S. N., & Alzamora, S. M. (2013). Impact of combined ascorbic acid/CaCl2, hydrogen peroxide and ultraviolet light treatments on structure, rheological properties and texture of fresh-cut pear (William var.). Journal of Food Engineering, 114, 164–173.

    Article  Google Scholar 

  • Gómez, P., García Loredo, A. B., Salvatori, D., Guerrero, S. N., & Alzamora, S. M. (2011). Viscoelasticity, texture and ultrastructure of cut apple as affected by sequential anti-browning and ultraviolet-C light treatments. Journal of Food Engineering, 107, 214–225.

    Article  Google Scholar 

  • Gómez, P., García Loredo, A. B., Nieto, A., Salvatori, D., Guerrero, S. N., & Alzamora, S. M. (2012). Effect of pulsed light combined with an antibrowning pretreatment on safety and quality of fresh cut apple. Innovative Food Science and Emerging Technologies., 16, 102–212.

    Article  Google Scholar 

  • Harker, F. R., Amos, R. L., Echeverria, G., & Amdgunson, F. A. (2006). Influence of texture on taste: insights gained during studies of hardness, juiciness, and sweetness of apple fruit. Journal of Food Science, 71, S77–S82.

    Article  CAS  Google Scholar 

  • Hough, G., Contarini, A., & Muñoz, A. (1994). Training a texture profile panel and constructing standard rating scales in Argentina. Journal of Texture Studies, 25, 45–57.

    Article  Google Scholar 

  • Ilker, R., & Szczesniak, A. S. (1990). Structural and chemical bases for texture of plant foodstuffs. Journal of Texture Studies, 21, 1–36.

    Article  CAS  Google Scholar 

  • Jack, F. R., Paterson, A., & Piggott, J. R. (1995). Perceived texture: direct and indirect methods for use in product development. International Journal of Food Science and Technology, 30, 1–12.

    Article  CAS  Google Scholar 

  • Jackman, R. L., & Stanley, D. W. (1995). Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage. Journal of Texture Studies, 26, 537–552.

    Article  Google Scholar 

  • Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterization of semi-solid foods. Food Research International, 39, 265–276.

    Article  CAS  Google Scholar 

  • Kunzek, H., Kabbert, R., & Gloyna, D. (1999). Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables. LWT Food Science and Technology, 208, 233–50.

    CAS  Google Scholar 

  • Lillfort, P. J. (2001). Mechanisms of fracture in foods. Journal of Texture Studies, 32, 397–417.

    Article  Google Scholar 

  • Martínez, V. Y., Nieto, A. B., Castro, M. A., & Alzamora, S. M. (2007). Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration. Journal of Food Engineering, 83, 394–403.

    Article  Google Scholar 

  • Mebatsion, H. K., Verboven, P., Ho, Q. T., Verlinden, B. E., & Nicolai, B. M. (2008). Modelling fruit (micro)structures, why and how? Trends in Food Science & Technology, 19, 59–66.

    Article  CAS  Google Scholar 

  • Meilgaard, M., Civille, G. V., & Carrt, B. T. (2006). Sensory evaluation techniques (4th Ed.) (p. 717). Florida: CRC.

    Book  Google Scholar 

  • Meullenet, J., Lyon, B. G., Carpenter, J. A., & Lyon, C. E. (1998). Relationship between sensory and instrumental texture profile attributes. Journal of Sensory Studies, 13, 77–93.

    Article  Google Scholar 

  • Mittal, J. P., & Mohsenin, N. N. (1987). Rheological characterization of apple cortex. Journal of Texture Studies, 18, 65–93.

    Article  Google Scholar 

  • Pitt, R. E. (1992). Viscoelastic properties of fruits and vegetables. In Rao & Steffe (Eds.), Viscoelastic properties of foods, pp. 49–76. London: Elsevier.

    Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. The Journal of Cell Biology, 12, 208–212.

    Article  Google Scholar 

  • Sherman, P. (1970). Industrial rheology. New York: Academic.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Szczesniak, A. S. (1990). Psychorheology and texture as factors controlling the consumer acceptance of food. Cereal Foods World, 351, 1201–5.

    Google Scholar 

  • Szczesniak, A. S., & Ilker, R. (1988). The meaning of texture characteristics—juiciness in plant foodstuffs. Journal of Texture Studies, 19, 66–78.

    Google Scholar 

  • Szczesniak, A. S., Brandt, M. A., & Friedman, H. H. (1963). Development of standard ratings scales for mechanical parameters and correlation between the objective and sensory methods of texture evaluation. Journal of Food Science, 28, 397–403.

    Article  Google Scholar 

  • Thiel, D. L., & Donald, A. M. (2000). Microstructural failure mechanisms in cooked and aged carrots. Journal of Texture Studies, 31, 437–455.

    Article  Google Scholar 

  • Thybo, A. K., & Martens, M. (1998). Development of a sensory texture profile of cooked potatoes by multivariate data analysis. Journal of Texture Studies, 29, 453–468.

    Article  Google Scholar 

  • Vicente, S., Nieto, A. B., Hodara, K., Castro, M. A., & Alzamora, S. M. (2012). Structure, rheology, and water mobility of apple tissue induced by osmotic dehydration with glucose or trehalose. Food and Bioprocess Technology, 5, 3075–3089.

    Article  CAS  Google Scholar 

  • Waldron, K. W., Smith, A. C., Parr, A. J., Ng, A., & Parker, M. L. (1997). New approaches to understanding and controlling and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science & Technology, 8, 213–221.

    Article  CAS  Google Scholar 

  • Waldron, K. W., Parker, M. L., & Smith, A. C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 2, 128–146.

    Article  Google Scholar 

  • Wilkinson, C., Dijksterhuis, G. B., & Minekus, M. (2000). From food structure to texture. Trends in Food Science & Technology, 11, 442–450.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the University of Buenos Aires, CONICET, and ANPCyT of Argentina and from BID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Alzamora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loredo, A.B.G., Guerrero, S.N. & Alzamora, S.M. Relationships Between Texture and Rheological Properties in Blanched Apple Slices (var. Granny Smith) Studied by Partial Least Squares Regression. Food Bioprocess Technol 7, 2840–2854 (2014). https://doi.org/10.1007/s11947-014-1259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1259-0

Keywords

Navigation