Antošová, M., Polakovič, M., Slovinská, M., Madlová, A., Illeová, V., & Báleš, V. (2002). Effect of sucrose concentration and cultivation time on batch production of fructosyltransferase by Aureobasidium pullulans CCY 27-1-1194. Chemical Papers, 56, 394–399.
Google Scholar
Antošová, M., Illeová, V., Vandáková, M., Družkovská, A., & Polakovič, M. (2008). Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. Journal of Biotechnology, 135, 58–63.
Google Scholar
Baba, S., Ohta, A., Ohtsuki, M., Takizawa, T., Adachi, T., & Hara, H. (1996). Fructooligosaccharides stimulate the absorption of magnesium from the hindgut in rats. Nutrition Research, 16, 657–666.
CAS
Google Scholar
Balasubramaniem, A. K., Nagarajan, K. V., & Paramasamy, G. (2001). Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochemistry, 36, 1241–1247.
CAS
Google Scholar
Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., et al. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706.
CAS
Google Scholar
Belghith, K. S., Dahecha, I., Belghith, H., & Mejdouba, H. (2012). Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. International Journal of Biological Macromolecules, 50, 451–458.
CAS
Google Scholar
Bennett, N., Greco, D. S., Peterson, M. E., Kirk, C., Mathes, M., & Fettman, M. J. (2006). Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate high fiber diet in the management of feline diabetes mellitus. Journal of Feline Medicine & Surgery, 8, 73–84.
Google Scholar
Brenda—The Comprehensive Enzyme Information System. (2005). Cologne University BioInformatics Center, Germany. Retrieved 3 May 2005 from http://www.brenda.uni-koeln.de/.
Brighenti, F., Benini, L., Del Rio, D., Casiraghi, C., Pellegrini, N., Scazzina, F., et al. (2006). Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. American Journal of Clinical Nutrition, 83, 817–822.
CAS
Google Scholar
Bugaut, M., & Bentéjac, M. (1993). Biological effects of short-chain fatty acids in nonruminant mammals. Annual Review of Nutrition, 13, 217–241.
CAS
Google Scholar
Burkitt, D. P. (1969). Related disease—related cause? The Lancet, 2, 1229–1231.
CAS
Google Scholar
Chaudhri, O. B., Salem, V., Murphy, K. G., & Bloom, S. R. (2008). Gastrointestinal satiety signals. Annual Review of Physiology, 70, 239–255.
CAS
Google Scholar
Chávez, F. P., Rodriguez, L., Díaz, J., Delgado, J. M., & Cremata, J. A. (1997). Purification and characterization of an invertase from Candida utilis: comparison with natural and recombinant yeast invertases. Journal of Biotechnology, 53, 67–74.
Google Scholar
Chen, W. C. (1995). Production of β-fructofuranosidase by Aspergillus japonicus in batch and fed-batch cultures. Biotechnology Letters, 17, 1291–1294.
CAS
Google Scholar
Chen, W.-C., & Liu, C.-H. (1996). Production of β-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160.
CAS
Google Scholar
Chen, H.-L., Lu, Y.-H., Lin, J., & Ko, L.-Y. (2000). Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutrition Research, 20, 1725–1733.
CAS
Google Scholar
Chiang, C. J., Lee, W. C., Sheu, D. C., & Duan, K. J. (1997). Immobilization of β-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnology Progress, 13, 577–582.
CAS
Google Scholar
Clydesdale, F. (2004). Functional foods: opportunities & challenges. Food Technology, 58, 35–40.
Google Scholar
Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361.
CAS
Google Scholar
Crittenden, R. G., & Playne, M. J. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Applied Microbiology and Biotechnology, 58, 297–302.
Google Scholar
De Preter, V., Hamer, H. M., Windey, K., & Verbeke, K. (2011). The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Molecular Nutrition & Food Research, 55, 46–57.
Google Scholar
Delgado, G. T. C., Tamashiro, W. M. S. C., Junior, M. R. M., Moreno, Y. M. F., & Pastore, G. M. (2011). The putative effects of prebiotics as immunomodulatory agents. Food Research International, 44, 3167–3173.
CAS
Google Scholar
Delzenne, N. M., & Kok, N. (2001). Effects of fructans-type prebiotics on lipid metabolism. The American Journal of Clinical Nutrition, 73(Suppl), 456S–458S.
CAS
Google Scholar
Delzenne, N. M., Daubioul, C., Neyrinck, A., Lasa, M., & Taper, H. S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition, 87(Suppl), S255–S259.
CAS
Google Scholar
Dhake, A. B., & Patil, M. B. (2007). Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Brazilian Journal of Microbiology, 38, 194–199.
Google Scholar
Dominguez, A., Nobre, C., Rodrigues, L. R., Peres, A. M., Torres, D., Rocha, I., et al. (2012). New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydrate Polymers, 89, 1174–1179.
CAS
Google Scholar
Druce, M. R., Small, C. J., & Bloom, S. R. (2004). Minireview: gut peptides regulating satiety. Endocrinology, 145, 2660–2665.
CAS
Google Scholar
Fiordaliso, M., Kok, N., Desager, J. P., Goethals, F., Deboyser, D., Roberfroid, M., et al. (1995). Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30, 163–167.
CAS
Google Scholar
Fujishima, M., Sakai, H., Ueno, K., Takahashi, N., Onodera, S., Benkeblia, N., et al. (2005). Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytologist, 165, 513–524.
CAS
Google Scholar
Ganaie, M. A., Gupta, U. S., & Kango, N. (2013). Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 97, 12–17.
CAS
Google Scholar
Ghazi, I., De Segura, A. G., Fernández-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., et al. (2005). Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 35, 19–27.
CAS
Google Scholar
Ghazi, I., Fernández-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211.
CAS
Google Scholar
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.
CAS
Google Scholar
Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17, 259–275.
CAS
Google Scholar
Glore, S. R., Van Treeck, D., Knehans, A. W., & Guild, M. (1994). Soluble fiber and serum lipids: a literature review. Journal of the American Dietetic Association, 94, 425–436.
CAS
Google Scholar
Gomes, A. J. P. (2009). Optimização da Produção de Frutooligossacáridos por Aspergillus. Unpublished master's thesis. University of Minho, Braga, Portugal.
Goulas, A., Tzortzis, G., & Gibson, G. R. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifobacterium bifidum NCIMB 41171. International Dairy Journal, 17, 648–656.
CAS
Google Scholar
Gudiel-Urbano, M., & Goñi, I. (2002). Effect of fructooligosaccharides on nutritional parameters and mineral bioavailability in rats. Journal of the Science of Food and Agriculture, 82, 913–917.
CAS
Google Scholar
Hayashi, S., Nonoguchi, M., Takasaki, Y., Ueno, H., & Imada, K. (1992). Purification and properties of β-fructofuranosidase from Aureobasidium sp. ATCC 20524. Journal of Industrial Microbiology, 7, 251–256.
CAS
Google Scholar
Hernández, O., Ruiz-Matute, A. I., Olano, A., Moreno, F. J., & Sanz, M. L. (2009). Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. International Dairy Journal, 19, 531–536.
Google Scholar
Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64, 175–186.
Google Scholar
Hosono, A., Ozawa, A., Kato, R., Ohnishi, Y., Nakanishi, Y., Kimura, T., et al. (2003). Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Bioscience, Biotechnology, and Biochemistry, 67, 758–764.
CAS
Google Scholar
Howlett J (Ed.) (2008) Functional foods—from science to health and claims. ILSI Europe—Concise Monograph Series, Brussels, Belgium.
Jackson, K. G., Taylor, G. R. L., Clohessy, A. M., & Williams, C. M. (1999). The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. British Journal of Nutrition, 82, 23–30.
CAS
Google Scholar
Jedrzejczak-Krzepkowska, M., Tkaczuk, K. L., & Bielecki, S. (2011). Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochemistry, 46, 1963–1972.
CAS
Google Scholar
Kim, Y. S., Tsa, O. D., Morita, A., & Bella, A. (1982). Effect of sodium butyrate and three human colorectal adenocarcinoma cell lines in culture. Falk Symposium, 31, 317–323.
CAS
Google Scholar
Koops, A. J., & Jonker, H. H. (1994). Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus “Columbia”: I.Fructan: fructan fructosyl transferase. Journal of Experimental Botany, 45, 1623–1631.
Google Scholar
Korzenik, J. R., & Podolsky, D. K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nature Reviews Drug Discovery, 5, 197–209.
CAS
Google Scholar
Kunz, C., & Rudloff, S. (2006). Health promoting aspects of milk oligosaccharides. International Dairy Journal, 16, 1341–1346.
CAS
Google Scholar
L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84.
Google Scholar
Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Purification and partial characterization of intracellular fructosyltransferase from a novel strain of Aureobasidium pullulans. Turkish Journal of Biology, 31, 147–154.
CAS
Google Scholar
Lee, W.-C., Chiang, C.-J., & Tsai, P.-Y. (1999). Kinetic modeling of fructo-oligosaccharide production catalyzed by immobilized β-fructofuranosidase. Industrial & Engineering Chemistry Research, 38, 2564–2570.
CAS
Google Scholar
Levrat, M. A., Favier, M. L., Moundras, C., Rémésy, C., Demigné, C., & Morand, C. (1994). Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. Journal of Nutrition, 124, 531–538.
CAS
Google Scholar
Lim, C. C., Ferguson, L. R., & Tannock, G. W. (2005a). Dietary fibres as “prebiotics”: implications for colorectal cancer. Molecular Nutrition & Food Research, 49, 609–619.
Google Scholar
Lim, J. S., Park, M. C., Lee, J. H., Park, S. W., & Kim, S. W. (2005b). Optimization of culture medium and conditions for Neo-fructooligosaccharides production by Penicillium citrinum. European Food Research and Technology, 221, 639–644.
CAS
Google Scholar
Lin, T.-J., & Lee, Y.-C. (2008). High-content fructooligosaccharides production using two immobilized microorganisms in an internal-loop airlift bioreactor. Journal of the Chinese Institute of Chemical Engineers, 39, 211–217.
CAS
Google Scholar
Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104, 305–344.
CAS
Google Scholar
Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Stefuca, V., & Báles, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharides. Chemical Papers, 53, 366–369.
Google Scholar
Madlová, A., Antošová, M., Polakovič, M., & Báles, V. (2000). Thermal stability of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 54, 339–344.
Google Scholar
Maiorano, A. E., Piccoli, R. M., Silva, E. S., & Rodrigues, M. F. A. (2008). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnology Letters, 30, 1867–1877.
CAS
Google Scholar
Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice & Research Clinical Gastroenterology, 18, 287–298.
Google Scholar
Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56, 181–188.
Google Scholar
Metz, B., & Kossen, N. W. F. (1977). Biotechnology review: the growth of the molds in the form of pellets, a literature. Biotechnology and Bioengineering, 19, 781–799.
CAS
Google Scholar
Mishra, S., & Mishra, H. N. (2013). Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food and Bioprocess Technology, 6, 3166–3176.
CAS
Google Scholar
Munjal, U., Glei, M., Pool-Zobel, B. L., & Scharlau, D. (2009). Fermentation products of inulin-type fructans reduce proliferation and induce apoptosis in human colon tumour cells of different stages of carcinogenesis. British Journal of Nutrition, 27, 1–9.
Google Scholar
Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587–597.
CAS
Google Scholar
Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53, 154–157.
CAS
Google Scholar
Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344, 795–800.
CAS
Google Scholar
Mussatto, S. I., Prata, M. B., Rodrigues, L. R., & Teixeira, J. A. (2012). Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. European Food Research and Technology, 235, 13–22.
CAS
Google Scholar
Nemukula, A., Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2009). Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresource Technology, 100, 2040–2045.
CAS
Google Scholar
Nguyen, Q. D., Mattes, F., Hoschke, Á., Rezessy-Szabó, J., & Bhat, M. K. (1999). Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnology Letters, 21, 183–186.
CAS
Google Scholar
Nguyen, Q. D., Rezessy-Szabó, J. M., Bhat, M. K., & Hoschke, Á. (2005). Purification and some properties of β-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466.
CAS
Google Scholar
Nilsson, A. C., Ostman, E. M., Holst, J. J., & Bjorck, I. M. E. (2008). Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. The Journal of Nutrition, 138, 732–739.
CAS
Google Scholar
Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by β-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44.
CAS
Google Scholar
Nobre, C., Teixeira, J.A., & Rodrigues, L.R. (2013). New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2012.697082.
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.
CAS
Google Scholar
Park, J.-P., Oh, T.-K., & Yun, J.-W. (2001). Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6. Process Biochemistry, 37, 471–476.
Google Scholar
Pierre, F., Perrin, P., Champ, M., Bornet, F., Meflah, K., & Menanteau, J. (1997). Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Research, 57, 225–228.
CAS
Google Scholar
Piñeiro, M., Asp, N. G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O., et al. (2008). FAO Technical meeting on prebiotics. Journal of Clinical Gastroenterology, 42(Suppl 3), S156–S159.
Google Scholar
Playne, M. J., & Crittenden, R. G. (2004). Prebiotics from lactose, sucrose, starch, and plant polysaccharides. In J.-R. Neeser & J. B. German (Eds.), Bioprocesses and biotechnology for functional foods and nutraceuticals (pp. 99–135). New York: Marcel Dekker.
Google Scholar
Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Fructooligosaccharide production by Penicillium expansum. Biotechnology Letters, 32, 837–840.
CAS
Google Scholar
Qiang, X., YongLie, C., & QianBing, W. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77, 435–441.
Google Scholar
Raschka, L., & Daniel, H. (2005). Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 37, 728–735.
CAS
Google Scholar
Risso, F. V. A., Mazutti, M. A., Treichel, H., Costa, F., Maugeri, F., & Rodrigues, M. I. (2012). Comparison between systems for synthesis of fructooligosaccharides from sucrose using free inulinase from Kluyveromyces marxianus NRRL Y-7571. Food and Bioprocess Technology, 5, 331–337.
CAS
Google Scholar
Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33, 103–148.
CAS
Google Scholar
Roberfroid, M. B. (2000a). Defining functional foods. In G. Gibson & C. Williams (Eds.), Functional foods: trends and prospects (pp. 9–25). Cambridge: Woodhead Publishing.
Google Scholar
Roberfroid, M. B. (2000b). Prebiotics and probiotics: are they functional foods? The American Journal of Clinical Nutrition, 71(Suppl), 1682S–1687S.
CAS
Google Scholar
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(Suppl), S1–S63.
CAS
Google Scholar
Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT—Food Science and Technology, 50, 1–16.
CAS
Google Scholar
Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004a). Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 753–758.
CAS
Google Scholar
Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004b). Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Applied Microbiology and Biotechnology, 65, 530–537.
CAS
Google Scholar
Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088.
CAS
Google Scholar
Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64.
Google Scholar
Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457.
CAS
Google Scholar
Sanz, M. L., Polemis, N., Morales, V., Corzo, N., Drakoularakou, A., Gibson, G. R., et al. (2005). In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry, 53, 2914–2921.
CAS
Google Scholar
Scheppach, W., & Weiler, F. (2004). The butyrate story: old wine in new bottles? Current Opinion in Clinical Nutrition Metabolic Care, 7, 563–567.
Google Scholar
Schley, P. D., & Field, J. C. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87, 221–230.
Google Scholar
Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. J. (2001). Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters, 23, 1499–1503.
CAS
Google Scholar
Sheu, D.-C., Duan, K.-J., Cheng, C.-Y., Bi, J.-L., & Chen, J.-Y. (2002). Continuous production of high-content fructooligosaccharides by a complex cell system. Biotechnology Progress, 18, 1282–1286.
CAS
Google Scholar
Shimizu, M., & Hachimura, S. (2011). Gut as a target for functional food. Trends in Food Science & Technology, 22, 646–650.
CAS
Google Scholar
Shin, H. T., Baig, S. Y., Lee, S. W., Suh, D. S., Kwon, S. T., Lim, Y. B., & Lee, J. H. (2004a). Production of fructo-oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresource Technology, 93, 59–62.
Shin, H. T., Park, K. M., Kang, K. H., Oh, D. J., Lee, S. W., Baig, S. Y., et al. (2004b). Novel method for cell immobilization and its application for production of oligosaccharides from sucrose. Letters in Applied Microbiology, 38, 176–179.
CAS
Google Scholar
Shiomi, N. (1982). Purification and characterisation of 1F-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydrate Research, 99, 157–169.
CAS
Google Scholar
Simmering, R., & Blaut, M. (2001). Pro- and prebiotics—the tasty guardian angels? Applied Microbiology and Biotechnology, 55, 19–28.
CAS
Google Scholar
Singh, R. S., & Singh, R. P. (2010). Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technology and Biotechnology, 48, 435–450.
CAS
Google Scholar
Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—a review. Appetite, 51, 456–467.
Google Scholar
Straathof, A. J. J., Kieboom, A. P. G., & Bekkum, H. (1986). Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydrate Research, 146, 154–159.
CAS
Google Scholar
Szajewska, H. (2010). Probiotics and prebiotics in preterm infants: where are we? Where are we going? Early Human Development, 86, S81–S86.
Google Scholar
Tokunaga, T., Oku, T., & Hosoya, N. (1986). Influence of chronic intake of new sweetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. Journal of Nutritional Science and Vitaminology (Tokyo), 32, 111–121.
CAS
Google Scholar
van Hijum, S. A. F. T., van Geel-Schutten, G. H., Rahaoui, H., van der Maarel, M. J. E. C., & Dijkhuizen, L. (2002). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Applied and Environmental Microbiology, 68, 4390–4398.
Google Scholar
Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M. (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22.
Google Scholar
Voragen, A. G. J. (1998). Technological aspects of functional food-related carbohydrates. Trends in Food Science & Technology, 9, 328–335.
CAS
Google Scholar
Wallis, G. L. F., Hemming, F. W., & Peberdy, J. F. (1997). Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Archives of Biochemistry and Biophysics, 345, 214–222.
CAS
Google Scholar
Wang, L.-M., & Zhou, H.-M. (2006). Isolation and identification of a novel A. japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. Journal of Food Biochemistry, 30, 641–658.
Google Scholar
Yamamoto, Y., Takahashi, Y., Kawano, M., Iizuka, M., Matsumoto, T., Saeki, S., et al. (1999). In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. The Journal of Nutritional Biochemistry, 10, 13–18.
CAS
Google Scholar
Yoon, S. H., Mukerjea, R., & Robyt, J. F. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydrate Research, 338, 1127–1132.
CAS
Google Scholar
Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2006). Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiology Letters, 265, 159–163.
CAS
Google Scholar
Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2007). Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. Journal of Bioscience and Bioengineering, 103, 491–493.
CAS
Google Scholar
Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnology Letters, 30, 535–539.
CAS
Google Scholar
Yu Wang, M. A., Tao Zeng, M. D., Shu-e Wang, M. A., Wei Wang, M. A., Qian Wang, M. A., & Hong-Xia Yu, M. A. (2010). Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition, 26, 305–311.
Google Scholar
Yun, J. W. (1996). Fructooligosaccharides—occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117.
CAS
Google Scholar
Yun, J. W., & Song, S. K. (1993). The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose oxidase. Biotechnology Letters, 15, 573–576.
Google Scholar
Yun, J. W., Kim, D. H., & Song, S. K. (1997). Enhanced production of fructosyltransferase and glucosyltransferase by substrate-feeding cultures of Aureobasidium pullulans. Journal of Fermentation and Bioengineering, 84, 261–263.
CAS
Google Scholar
Ziemer, C. J., & Gibson, G. R. (1998). An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. International Dairy Journal, 8, 473–479.
CAS
Google Scholar
Zuccaro, A., Götze, S., Kneip, S., Dersch, P., & Seibel, J. (2008). Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering. ChemBioChem, 9, 143–149.
CAS
Google Scholar