Skip to main content

Advertisement

Log in

Hyperbaric storage at and above room temperature of a highly perishable food

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hyperbaric storage at naturally variable room temperature (RT) conditions (18–21 °C) and above (30 °C) was evaluated as a possible new food preservation method, regardless of temperature. Preservation of watermelon juice (used as a case study of a highly perishable food) at RT and 5 °C at atmospheric pressure was compared to preservation under 100 MPa at RT. After 8 h of hyperbaric storage at 100 MPa, the initial microbial loads of the watermelon juice were reduced by 1 log unit for total aerobic mesophiles, and 1–2 log units for Enterobacteriaceae and yeasts and moulds, to levels of about 3 log units for the former and below the detection limit for the latter, and remained thereafter unchanged up to 60 h. Similar results were obtained at 30 °C at 100 MPa after 8 h. At atmospheric pressure at RT (24 h) and 30 °C (8 h), microbial levels were already above quantification limits and unacceptable for consumption. Furthermore, pressure attenuated the increase in titratable acidity verified at atmospheric pressure, but caused higher colour changes, especially a higher lightness and a lower browning degree. Post-hyperbaric storage at 5 °C revealed an extended shelf life, as an additional benefit of hyperbaric storage. These results show that hyperbaric storage is a very promising food preservation methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe, F. (2007). Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Bioscience, Biotechnology, and Biochemistry, 71(10), 2347–2357.

    Article  CAS  Google Scholar 

  • Abe, F., & Horikoshi, K. (2000). Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Molecular and Cellular Biology, 20(21), 8093–8102.

    Article  CAS  Google Scholar 

  • Arrêté du 22 mars (1993). Règles d’hygiène applicables aux végétaux et préparation végétaux crus prêts à l’emploi à la consommation humaine. Journal Officiel (30.03.1993).

  • Arocho, Y. D., Bellmer, D., Maness, N., McGlynn, W., & Rayas–Duarte, P. (2012). Watermelon pomace composition and the effect of drying and storage on lycopene content and color. Journal of Food Quality, 35(5), 331–340.

    Article  CAS  Google Scholar 

  • Artés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., & Artés, F. (2010). Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biology and Technology, 55(2), 114–120.

    Article  Google Scholar 

  • Bartlett, D. (2002). Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1595(1), 367–381.

    Article  CAS  Google Scholar 

  • Charm, S. E., Longmaid, H. E., & Carver, J. (1977). A simple system for extending refrigerated, nonfrozen preservation of biological material using pressure. Cryobiology, 14(5), 625–636.

    Article  CAS  Google Scholar 

  • Chisari, M., Barbagallo, R. N., & Spagna, G. (2007). Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. Journal of Agricultural and Food Chemistry, 55(9), 3469–3476.

    Article  CAS  Google Scholar 

  • Fonseca, J. M., & Rushing, J. W. (2006). Effect of ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology, 40(3), 256–261.

    Article  CAS  Google Scholar 

  • Hayashi, R. (1992). Utilization of pressure in addition to temperature in food science and technology. In C. Balny, R. H. K. Heremans, & P. Masson (Eds.), High pressure and biotechnology (pp. 185–193). Montrouge: Colloque Inserm/John Libbey Eurotext.

    Google Scholar 

  • Jannasch, H. W., Eimhjellen, K., & Farmanfarmalan, A. (1971). Microbial degradation of organic matter in the deep sea. Science, 171(3972), 672–675.

    Article  CAS  Google Scholar 

  • Kalichevsky, M., Knorr, D., & Lillford, P. (1995). Potential food applications of high-pressure effects on ice–water transitions. Trends in Food Science & Technology, 6(8), 253–259.

    Article  CAS  Google Scholar 

  • Liu, Y., Hu, X., Zhao, X., & Song, H. (2012). Combined effect of high pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innovative Food Science & Emerging Technologies, 13, 112–119.

    Article  Google Scholar 

  • López-Serrano, M., & Ros Barceló, A. (2002). Comparative study of the products of the peroxidase-catalyzed and the polyphenoloxidase-catalyzed (+)-catechin oxidation. Their possible implications in strawberry (fragaria × ananassa) browning reactions. Journal of Agricultural and Food Chemistry, 50(5), 1218–1224.

    Article  Google Scholar 

  • Matsumura, P., Keller, D. M., & Marquis, R. E. (1974). Restricted pH ranges and reduced yields for bacterial growth under pressure. Microbial Ecology, 1(1), 176–189.

    Article  CAS  Google Scholar 

  • Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969–985.

    Article  Google Scholar 

  • Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34.

    Article  Google Scholar 

  • Petrou, P., Soteriou, G., Schouten, R. E., & Kyriacou, M. C. (2013). Effects of rind removal on physicochemical quality characteristics of fresh–cut watermelon [Citrullus lanatus (Thunb) Matsum & Nakai] during cold storage. International Journal of Food Science & Technology, 48(2), 357–362.

    Article  CAS  Google Scholar 

  • Ramirez, R., Saraiva, J., Lamela, C. P., & Torres, J. A. (2009). Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Engineering Reviews, 1(1), 16–30.

    Article  CAS  Google Scholar 

  • Rawson, A., Tiwari, B., Patras, A., Brunton, N., Brennan, C., Cullen, P., & O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44(5), 1168–1173.

    Article  CAS  Google Scholar 

  • Segovia-Bravo, K., Guignon, B., Bermejo-Prada, A., Sanz, P., & Otero, L. (2012). Hyperbaric storage at room temperature for food preservation: A study in strawberry juice. Innovative Food Science and Emerging Technologies, 15, 14–22.

    Article  Google Scholar 

  • Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Sousa, S. G., Delgadillo, I. & Saraiva, J. A. (2013). Human milk composition and preservation: evaluation of high-pressure processing as a non-thermal pasteurisation technology. Critical Reviews in Food Science and Nutrition, for publication.

  • Wang, H.-y., Hu, X.-s., Chen, F., Wu, J.-h., Zhang, Z.-h., Liao, X.-j., & Wang, Z.-f. (2006). Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. European Food Research and Technology, 223(2), 282–289.

    Article  CAS  Google Scholar 

  • Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., Ma, Y., & Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 254–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Fundação para a Ciência e a Tecnologia (FCT, Portugal), European Union, QREN, FEDER, COMPETE for funding the QOPNA research unit (project PEst-C/QUI/UI0062/2013), and to Sílvia Sousa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Saraiva.

Additional information

Liliana G. Fidalgo, Mauro D. Santos, Rui P. Queirós, Rita S. Inácio, Maria J. Mota, Rita P. Lopes and Jorge A. Saraiva contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidalgo, L.G., Santos, M.D., Queirós, R.P. et al. Hyperbaric storage at and above room temperature of a highly perishable food. Food Bioprocess Technol 7, 2028–2037 (2014). https://doi.org/10.1007/s11947-013-1201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1201-x

Keywords

Navigation