Skip to main content
Log in

Total Antioxidative Capacity and Total Phenolic Levels in Pomegranate Husks Correlate to Several Postharvest Fruit Quality Parameters

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The demand to extend the marketing period of pomegranates requires a better understanding of the processes occurring during postharvest storage. Among the important factors that limit the long-term storage of pomegranates are disorders occurring on the fruit husk: fungal decay, chilling injury, shrinkage due to weight loss, and husk scald, all leading to loss of visual quality. The aim of this study was to examine processes that taking place during storage, and to analyze the relationship between the total antioxidant capacity and total phenolics content of the husks and the development of husk disorders in seven accessions. While the level of total phenolics increased during storage, concomitantly with the color index, the level of punicalagin, the main polyphenol in the husks with the highest antioxidant activity, declined during storage. The content of titratable acidity was also reduced. Regression analysis indicates that fruit having a high antioxidant capacity, high total phenolics content, and high levels of punicalin in their husks have a better ability to resist fungal decay and weight loss, in addition to being less sensitive to husk scald. On the other hand, the results suggest that the development of most husk disorders is not correlated to the content of total soluble solids, titratable acidity, punicalagin, anthocyanin, or husk color. Nonetheless, poorly colored accessions were relatively more sensitive to chilling injury expressed as surface pitting, compared with the more colored accessions. The appearance of these chilling injury symptoms was not correlated to total phenolics or the antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Artés, F., Martin, J. G., & Mratinez, J. A. (1996). Controlled atmosphere storage of pomegranate. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203(1), 33–37.

    Article  Google Scholar 

  • Artés, F., Tudela, J. A., & Villaescusa, R. (2000). Thermal postharvest treatment for improving pomegranate quality and shelf life. Postharvest Biology and Technology, 18(5), 245–251.

    Article  Google Scholar 

  • Ayala-Zavalaa, J., Wang, S., Wang, C., & Gonzalez-Aguilar, G. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. Lebensm-Wiss u-Technol, 37(7), 687–695.

    Article  Google Scholar 

  • Ballester, A. R., Lafuente, M. T., de Vos, R. C., Bovy, A. G., & Gonzalez-Candelas, L. (2013). Citrus phenylpropanoids and defence against pathogens. Part I: Metabolic profiling in elicited fruits. Food Chemistry, 136(1), 178–185.

    Article  CAS  Google Scholar 

  • Bell, C., & Hawthorne, S. (2008). Ellagic acid, pomegranate and prostate cancer—A mini review. Journal of Pharmacy and Pharmacology, 60(2), 139–144.

    Article  CAS  Google Scholar 

  • Ben-Arie, R., & Or, E. (1986). The development and control of husk scald on Wonderful pomegranate fruit during storage. Journal of the American Society for Horticultural Science, 111(4), 395–399.

    Google Scholar 

  • Ben-Arie, R., Segal, N., & Guelfat-Reich, S. (1984). The maturation and ripening of ‘Wonderful’ pomegranate. Journal of the American Society for Horticultural Science, 109(7), 898–902.

    CAS  Google Scholar 

  • Ben-Simhon, Z., Judeinstein, S., Nadler-Hassar, T., Trainin, T., Bar-Ya’akov, I., Borochov-Neori, H., & Holland, D. (2011). A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development. Planta, 234(5), 865–881.

    Article  CAS  Google Scholar 

  • Caleb, O. J., Mahajan, P. V., Opara, U. L., & Witthuhn, C. R. (2012a). Modeling the effect of time and temperature on respiration rate of pomegranate arils (cv. “Acco” and “Herskawitz”). Journal of Food Science, 77(4), E80–87.

    Article  CAS  Google Scholar 

  • Caleb, O. J., Mahajan, P. V., Opara, U. L., & Witthuhn, C. R. (2012b). Modified atmosphere packaging of pomegranate fruit and arils: A review. Food and Bioprocess Technology, 5(5), 15–30.

    Article  CAS  Google Scholar 

  • Connor, A. M., Luby, J. J., Hancock, J. F., Berkheimer, S., & Hanson, E. J. (2002). Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. Journal of Agricultural and Food Chemistry, 50(4), 893–898.

    Article  CAS  Google Scholar 

  • Dafny-Yalin, M., Glazer, I., Bar-Ilan, I., Kerem, Z., Holland, D., & Amir, R. (2010). Color, sugars and organic acids composition in aril juices and peel homogenates prepared from different pomegranate accessions. Journal of Agricultural and Food Chemistry, 58(7), 4342–4352.

    Article  CAS  Google Scholar 

  • Defilippi, B. G., Whitaker, B. D., Hess-Pierce, B. M., & Kader, A. A. (2006). Development and control of scald on Wonderful pomegranate during long-term storage. Postharvest Biology and Technology, 41(3), 234–243.

    Article  CAS  Google Scholar 

  • Fischer, U. A., Jaksch, A. V., Carle, R., & Kammerer, D. R. (2012). Determination of lignans in edible and nonedible parts of pomegranate (Punica granatum L.) and products derived therefrom, particularly focusing on the quantitation of isolariciresinol using HPLC-DAD-ESI/MSn. Journal of Agricultural and Food Chemistry, 60(1), 283–292.

    Article  CAS  Google Scholar 

  • Gil, M. I., García-Viguera, C., Artés, F., & Tomás-Barberán, F. A. (1995). Changes in pomegranate juice pigmentation during ripening. Journal of the Science of Food and Agriculture, 68(1), 77–81.

    Article  Google Scholar 

  • Gil, M. I., Tomas-Barberan, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581–4589.

    Article  CAS  Google Scholar 

  • Glazer, I., Masaphy, S., Marciano, P., Bar-Ilan, I., Holland, D., Kerem, Z., & Amir, R. (2012). Partial identification of bioactive compounds having antifungal activities from Punica granatum peel extracts. Journal of Agricultural and Food Chemistry, 60(19), 4841–4848.

    Article  CAS  Google Scholar 

  • Goncalves, B., Landbo, A. K., Knudsen, D., Silva, A. P., Moutinho-Pereira, J., Rosa, E., & Meyer, A. S. (2004). Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). Journal of Agricultural and Food Chemistry, 52(3), 523–530.

    Article  CAS  Google Scholar 

  • Holland D, Hatib K & Bar-Ya’akov I (2009) Pomegranate: Botany, horticulture, breeding. In: Horticultural reviews. pp 127–191. Hoboken, NJ, John Wiley & Sons, Inc.

  • Kader, A. A. (1986). Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technology, 40(5), 99–104.

    CAS  Google Scholar 

  • Kader, A. A. (2006). Postharvest biology and technology of pomegranates. In N. P. Seeram, R. N. Schulman, & D. Heber (Eds.), Pomegranates ancient roots to modern medicine (pp. 211–222). New York: Taylor & Francis.

    Google Scholar 

  • Konstantinou, S., Karaoglanidis, G. S., Bardas, G. A., Minas, I. S., Doukas, E. G., & Markoglou, A. N. (2011). Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production. Plant Disease, 95(6), 666–672.

    Article  Google Scholar 

  • Kotwal, G. J. (2008). Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing compounds (EVNCs). Vaccine, 26(24), 3055–3058.

    Article  CAS  Google Scholar 

  • Latte, K. P., & Kolodziej, H. (2000). Antifungal effects of hydrolysable tannins and related compounds on dermatophytes, mould fungi and yeasts. Zeitschrift fur Naturforschung C, 55(5–6), 467–472.

    CAS  Google Scholar 

  • Lee, M.-H., & Bostock, R. M. (2007). Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp: A role for cellular redox? Phytopathology, 97(3), 269–277.

    Article  CAS  Google Scholar 

  • Mori, K., Goto-Yamamoto, N., Kitayama, M., & Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journalof Experimental Botany, 58(8), 1935–1945.

    Article  CAS  Google Scholar 

  • Napolitano, A., Cascone, A., Graziani, G., Ferracane, R., Scalfi, L., Di Vaio, C., Ritieni, A., & Fogliano, V. (2004). Influence of variety and storage on the polyphenol composition of apple flesh. Journal of Agricultural and Food Chemistry, 52(21), 6526–6531.

    Article  CAS  Google Scholar 

  • Osorioa, E., Floresa, M., Hernndeza, D., Venturab, J., Rodrgiez, R., & Aguilar, C. N. (2010). Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Industrial Crops and Products, 31(3), 153–157.

    Article  Google Scholar 

  • Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I., & Ferreira, D. (2007). Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Medica, 73(5), 461–467.

    Article  CAS  Google Scholar 

  • Saeed, A. I. S. V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., & Quackenbush, J. (2003). TM4: A free, open-source system for microarray data management and analysis. Biotechniques, 34(2), 374–378.

    CAS  Google Scholar 

  • Sanzani SM, A. D. G., Schena, L., Solfrizzo, M., Ippolito, A., & Visconti, A. (2009). Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone. European Food Research and Technology, 22(3), 381–389.

    Article  Google Scholar 

  • Schwartz, E., Glazer, I., Bar-Ya’akov, I., Matityahu, I., Bar-Ilan, I., Holland, D., & Amir, R. (2009a). Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate cultivars. Food Chemistry, 115(3), 965–973.

    Article  Google Scholar 

  • Schwartz, E., Tzulker, R., Glazer, I., Bar-Ya’akov, I., Wiesman, Z., Tripler, E., Bar-Ilan, I., Fromm, H., Borochov-Neori, H., Holland, D., & Amir, R. (2009b). Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. Journal of Agricultural and Food Chemistry, 57(19), 9197–9209.

    Article  CAS  Google Scholar 

  • Seeram, N. P., Momin, R. A., Nair, M. G., & Bourquin, L. D. (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine, 8(5), 362–369.

    Article  CAS  Google Scholar 

  • Seeram, N. P., Schulman, R. N., & Heber, D. (2006a). Pomegranates: Ancient roots to modern medicine. Medicinal and aromatic plants—Industrial profiles (Vol. 43). Boca Raton: CRC/Taylor & Francis.

    Google Scholar 

  • Seeram, N. P., Schutzki, R., Chandra, A., & Nair, M. G. (2002). Characterization, quantification, and bioactivities of anthocyanins in Cornus species. Journal of Agricultural and Food Chemistry, 50(9), 2519–2523.

    Article  CAS  Google Scholar 

  • Seeram, N. P., Zhang, Y., Reed, J. D., Krueger, C. G., & Vaya, J. (2006b). Pomegranate phytochemicals. In N. P. Seeram, R. N. Schulman, & D. Heber (Eds.), Pomegranates ancient roots to modern medicine (pp. 3–29). Florida, USA: CRC Press.

    Google Scholar 

  • Shivashankara, K. S., Isobe, S., Al-Haq, M. I., Takenaka, M., & Shiina, T. (2004). Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field pretreatment. Journal of Agricultural and Food Chemistry, 52(5), 1281–1286.

    Article  CAS  Google Scholar 

  • Szuchman, A., Aviram, M., Musa, R., Khatib, S., & Vaya, J. (2008). Characterization of oxidative stress in blood from diabetic vs. hypercholesterolaemic patients, using a novel synthesized marker. Biomarkers, 13(1), 119–131.

    Article  CAS  Google Scholar 

  • Tavraini, S., DeglInnocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and caroteoids changes during harvest and after storage of Haywward kiwifruit. Food Chemistry, 107, 282–288.

    Article  Google Scholar 

  • Tayel, A. A., & El-Tras, W. F. (2010). Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method. Mycoses, 53(2), 117–122.

    Article  Google Scholar 

  • Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., & Amir, R. (2007). Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, 55(23), 9559–9570.

    Article  CAS  Google Scholar 

  • Ubi, B. W., Honda, C., Bessho, H., Kondo, S., Wada, M., Kobayashi, S., & Moriguchi, T. (2006). Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Science, 170, 571–578.

    Article  CAS  Google Scholar 

  • Whitaker, B., Nock, J., & Watkins, C. (2000). Peel tissue a-farnesene and conjugated trienol concentrations during storage of ‘White Angel’ ‘Rome Beauty’ hybrid apple selections susceptible and resistant to superficial scald. Postharvest Biology and Technology, 20(3), 231–241.

    Article  CAS  Google Scholar 

  • Whitaker, B. D. (2004). Oxidative stress and superficial scald of apple fruit. HortScience, 39(5), 933–937.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yoki Lotan from JCA-Israel for promoting and encouraging this research, to Adi Brosh, a Tel Hai Collage student for her assistance, to Kamel Hatib for devoted work with pomegranate trees at Newe Ya’ar, and to Dani Gamrasni for his help in monitoring the TSS and TA.

The source(s) of support

The research is supported by grants from the Israeli Ministry of Science (research 3–8094) and the JCA Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matityahu, I., Glazer, I., Holland, D. et al. Total Antioxidative Capacity and Total Phenolic Levels in Pomegranate Husks Correlate to Several Postharvest Fruit Quality Parameters. Food Bioprocess Technol 7, 1938–1949 (2014). https://doi.org/10.1007/s11947-013-1184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1184-7

Keywords

Navigation