Skip to main content

Advertisement

Log in

Inactivation of Spoiling Yeasts of Fruit Juices by Pulsed Ultrasound

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This paper reports on the use of ultrasound (US) as a suitable strategy to control the growth of spoiling yeasts in fruit juices. In a first phase, US technique was tested towards Saccharomyces cerevisiae inoculated in different juices (strawberry, orange, apple, pineapple and red-fruits): the treatment was performed by modulating the level of the power (20–60 %), the duration of the treatment (2–6 min) and the pulse (2–6 s), according to a fractional design. Then, the best treatment was applied against some other spoiling yeasts (Pichia membranifaciens, Wickerhamomyces anomalus, Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Candida norvegica). Finally, a challenge test for a commercial beverage (red-fruit juice), inoculated with Z. bailii and containing a citrus extract, was conducted evaluating the effect of US on the sensory scores of the beverage. The results showed that the effect of US was mainly influenced by the power and the duration of the treatment; on the other hand, the effect of pulse was less significant and slight. The highest reduction of S. cerevisiae was found in the following combination of the design: power 60 %/time 4 min/pulse 2 s and power 60 %/time 6 min/pulse 6 s; this result was confirmed for the other spoiling yeasts. US and citrus extract could be combined to prolong the shelf life of the red-fruit juice and control the growth of Z. bailii. The two hurdles exerted a different role and acted in different times: US reduced the initial contamination, whilst citrus extract controlled the yeast within the storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adekunte, A. O., Tiwari, N. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010a). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122, 500–507.

    Article  CAS  Google Scholar 

  • Adekunte, A. O., Tiwari, N. K., Scannell, A. G. M., Cullen, P. J., & O’Donnell, C. P. (2010b). Modelling yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 137, 116–120.

    Article  CAS  Google Scholar 

  • Adekunte, A. O., Valdramis, V. P., Tiwari, N. K., Slone, N., Cullen, P. J., O’Donnell, C. P., et al. (2010c). Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperature: a quantitative approach on microbial responses. International Journal of Food Microbiology, 142, 53–59.

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2012). Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continued thermo-sonication treatments. Journal of Food Engineering, 108, 383–392.

    Article  Google Scholar 

  • Bevilacqua, A., Campaniello, D., Sinigaglia, M., Ciccarone, C., & Corbo, M. R. (2012a). Sodium benzoate and citrus extract increase the effect of homogenization towards spores of Fusarium oxysporum in pineapple juice. Food Control, 28, 199–204.

    Article  CAS  Google Scholar 

  • Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2010). In vitro evaluation of the antimicrobial activity of eugenol, limonene and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices. Journal of Food Protection, 73, 888–894.

    CAS  Google Scholar 

  • Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2012b). Use of natural antimicrobials and high pressure homogenization to control the growth of Saccharomyces bayanus in apple juice. Food Control, 24, 109–115.

    Article  CAS  Google Scholar 

  • Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2012c). Inhibition of Pichia membranifaciens by homogenization and antimicrobials. Food and Bioprocess Technology: an International Journal, 5, 1061–1067.

    Article  CAS  Google Scholar 

  • Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2013a). Ultrasound and antimicrobial compounds: a suitable way to control Fusarium oxysporum in fruit juices? Food and Bioprocess Technology, 6, 1153–1163.

    Article  CAS  Google Scholar 

  • Bevilacqua, A., Speranza, B., Campaniello, D., Corbo, M. R., & Sinigaglia, M. (2013b). Inhibition of spoiling yeasts of fruit juices through citrus extracts. Journal of Food Protection. doi:10.4315/0362-028X.JFP-13-034.

    Google Scholar 

  • Butz, P., & Tauscher, B. (2002). Emerging technologies: chemical aspects. Food Research International, 35, 279–284.

    Article  CAS  Google Scholar 

  • Cárcel, J. A., García-Peréz, J. V., Benedito, J., & Mulet, A. (2012). Food process innovation through new technologies: use of ultrasound. Journal of Food Engineering, 110, 200–207.

    Article  Google Scholar 

  • Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835.

    Article  CAS  Google Scholar 

  • Corbo, M. R., Bevilacqua, A., Campaniello, D., D’Amato, D., Speranza, B., & Sinigaglia, M. (2009). Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches—a review. International Journal of Food Science and Technology, 44, 223–241.

    Article  CAS  Google Scholar 

  • Di Benedetto, N., Perricone, M., & Corbo, M. R. (2010). Alternative Non-Thermal Approaches: Microwave, Ultrasound, Pulsed Electric Fields, Irradiation. In A. Bevilacqua, M. R. Corbo, & M. Sinigaglia (Eds.), Application of alternative food-preservation technologies to enhance food safety and stability (pp. 143–160). Saif Zone, Sharjah, UAE: Bentham.

    Google Scholar 

  • Drakopoulou, S., Terzakis, S., Fountoulakis, M. S., Mantzavinos, D., & Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16, 629–634.

    Article  CAS  Google Scholar 

  • Gabriel, A. A. (2012). Microbial inactivation in cloudy apple juice by multi-frequency Dynashock power ultrasound. Ultrasonics Sonochemistry, 19, 346–351.

    Article  CAS  Google Scholar 

  • Gastélum, G. G., Avila-Sosa, R., López-Malo, A., & Palou, E. (2011). Listeria innocua multi-target inactivation by thermo-sonication and vanillin. Food and Bioprocess Technology, 5, 665–671.

    Article  Google Scholar 

  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (6th ed.). New York: Springer.

    Google Scholar 

  • Jomdecha, C., & Prateepasen, A. (2010). Effects of pulse ultrasonic irradiation on the lag phase of Saccharomyces cerevisiae growth. Letters in Applied Microbiology, 52, 62–69.

    Article  Google Scholar 

  • Lambert, R. J. W., & Bidlas, E. (2007a). An investigation of the Gamma hypothesis. A predictive modeling study of the effect of combined inhibitors (salt, pH and weak acids) on the growth of Aeromonas hydrophila. International Journal of Food Microbiology, 115, 12–28.

    Article  CAS  Google Scholar 

  • Lambert, R. J. W., & Bidlas, E. (2007b). A study of the Gamma hypothesis: predictive modeling of the growth and inhibition of Enterobacter sakazakii. International Journal of Food Microbiology, 115, 204–213.

    Article  CAS  Google Scholar 

  • Leighton, T. G. (1998). The principles of cavitation. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in food processing (pp. 151–182). London: Chapman & Hall.

    Google Scholar 

  • Leistner, L. (1978). Hurdle effect and energy saving. In W. K. Downey (Ed.), Food quality and nutrition. London: Applied Science Publishers. p 553.

    Google Scholar 

  • Luckow, T., & Delahunty, C. (2004a). Consumer acceptance of orange juice containing functional ingredients. Food Research International, 37, 805–814.

    Article  Google Scholar 

  • Luckow, T., & Delahunty, C. (2004b). Which juice is healthier? A consumer study of probiotic non-dairy juice drinks. Food Quality Preference, 15, 751–759.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Ramaswamy, R. (2012). Application of emerging technologies to control Salmonella in foods: a review. Food Research International, 45, 666–677.

    Article  CAS  Google Scholar 

  • Patist, A., & Bates, D. (2008). Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Science and Emerging Technologies, 9, 147–154.

    Article  CAS  Google Scholar 

  • Patrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, R., & Guerzoni, M. E. (2010). Potentialities of high-pressure homogenization to inactivate Zygosaccharomyces bailii in fruit juices. Journal of Food Science, 75, M116–M120.

    Article  CAS  Google Scholar 

  • Shiferaw Terefe, N., Gamage, M., Vilkhu, K., Simons, L., Mawson, R., & Versteeg, C. (2009). The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chemistry, 117, 20–27.

    Article  Google Scholar 

  • Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21, 323–331.

    Article  CAS  Google Scholar 

  • Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80, 509–516.

    Article  Google Scholar 

  • Wang, J., Hu, X., & Wang, Z. (2010). Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM 14558 and Alicyclobacillus acidoterrestris DSM 3922T in apple juice by ultrasound. International Journal of Food Microbiology, 139, 177–181.

    Article  CAS  Google Scholar 

  • Zwietering, M. H., Wijtzes, T., De Wit, J. C., & van’t Riet, K. (1992). A decision support system for prediction of the microbial spoilage in foods. Journal of Food Protection, 55, 973–979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Corbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevilacqua, A., Speranza, B., Campaniello, D. et al. Inactivation of Spoiling Yeasts of Fruit Juices by Pulsed Ultrasound. Food Bioprocess Technol 7, 2189–2197 (2014). https://doi.org/10.1007/s11947-013-1178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1178-5

Keywords