Skip to main content
Log in

A Kinetics and Modeling Study of Coffee Roasting Under Isothermal Conditions

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, changes in lightness, roast loss, residual CO2, and total volatiles of an Arabica coffee were investigated under isothermal conditions at 220, 230, 240, and 250 °C. The lightness of the roasted coffee, expressed as L* value, followed two-stage processes that could be modeled using pseudo first-order reaction models, giving activation energies of 59.7 and 170.2 kJ/mol for the first and second stages, respectively. Roast loss data also exhibited two-stage behavior, but followed zero-order reaction kinetics, with activation energies of 52.9 and 181.3 kJ/mol for the first and second stage, respectively. The first-to-second stage transition for L* value and roast loss occurred at light-medium roast. Residual CO2 in the coffee beans correlated negatively with L* value below medium-dark roast degree. However, a reversed correlation was observed above dark roast degree. The volatile compounds generated in roasted coffee were highly dependent on roasting temperature and roast degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajandouz, E. H., Tchiakpe, L. S., Dalle Ore, F., Benajiba, A., & Puigserver, A. (2001). Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems. Journal of Food Science, 66(7), 926–931.

    Article  CAS  Google Scholar 

  • Akiyama, M., Murakami, K., Hirano, Y., Ikeda, M., Iwatsuki, K., Wada, A., et al. (2008). Characterization of headspace aroma compounds of freshly brewed Arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee. Journal of Food Science, 73(5), C335–C346.

    Article  CAS  Google Scholar 

  • Anderson, B. A., Shimoni, E., Liardon, R., & Labuza, T. P. (2003). The diffusion kinetics of carbon dioxide in fresh roasted and ground coffee. Journal of Food Engineering, 59(1), 71–78.

    Article  Google Scholar 

  • Baggenstoss, J., Poisson, L., Luethi, R., Perren, R., & Escher, F. (2007). Influence of water quench cooling on degassing and aroma stability of roasted coffee. Journal of Agricultural and Food Chemistry, 55(16), 6685–6691.

    Article  CAS  Google Scholar 

  • Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008). Coffee roasting and aroma formation: application of different time–temperature conditions. Journal of Agricultural and Food Chemistry, 56(14), 5836–46.

    Article  CAS  Google Scholar 

  • Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Chapter 21: Coffee, tea, cocoa. Food Chemisty (pp. 938–970). Berlin: Springer.

  • Bell, L. N. (1996). Kinetics of non-enzymatic browning in amorphous solid systems: distinguishing the effects of water activity and the glass transition. Methodology, 28(6), 591–597.

    Google Scholar 

  • Bemiller, J. N., & Huber, K. C. (2008). Chapter 3: Carbohydrates. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Food chemistry (Vol. Fourth, pp. 101–102). Boca Raton: CRC Press.

    Google Scholar 

  • Bhattacharya, S. (1996). Kinetics on colour changes in rice due to parboiling. Journal of Food Engineering, 29, 99–106.

    Article  Google Scholar 

  • Bicchi, C. P., Panero, O. M., Pellegrino, G. M., & Vanni, A. C. (1997). Characterization of roasted coffee and coffee beverages by solid phase microextraction-gas chromatography and principal component analysis. Journal of Agricultural and Food Chemistry, 45, 4680–4686.

    Article  CAS  Google Scholar 

  • Bonnlander, B., Eggers, R., Engelhardt, U. H., & Maier, H. G. (2005). Chapter 4: Roasting. In I. Andrea & R. Viani (Eds.), Esspresso coffee-the science of quality (Vol. Second, pp. 180–214). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Bradbury, A. G. W. (2001). Chemistry I: non-volatile compounds. 1A. Carbohydrates. In R. J. Clarke & O. G. Vitztbum (Eds.), Coffee: recent developments (pp. 1–17). Malden: Blackwell science.

    Chapter  Google Scholar 

  • Buffo, R. A., & Cardelli-Freire, C. (2004). Coffee flavour: an overview. Flavour and Fragrance Journal, 19(2), 99–104.

    Article  CAS  Google Scholar 

  • Craig, I. D., Parker, R., Rigby, N. M., Cairns, P., & Ring, S. G. (2001). Maillard reaction kinetics in model preservation systems in the vicinity of the glass transition: experiment and theory. Journal of Agricultural and Food Chemistry, 49(10), 4706–4712.

    Article  CAS  Google Scholar 

  • Dutra, E. R., Oliveira, L. S., Franca, A. S., Ferrza, V. P., & Afonso, R. J. C. F. (2001). A preliminary study on the feasibility of using the composition of coffee roasting exhaust gas for the determination of the degree of roast. Journal of Food Engineering, 47(3), 241–246.

    Article  Google Scholar 

  • Eggers, R., & Pietsch, A. (2001). Chapter 4. Technology. I. Roasting. In R. J. Clarke & O. G. Vitzthum (Eds.), Coffee: recent developments (Vol. First, pp. 90–91). Malden: Blackwell science.

    Chapter  Google Scholar 

  • Geiger, R., Perren, R., Kuenzli, R., & Escher, F. (2005). Carbon dioxide evolution and moisture evaporation during roasting of coffee beans. Journal of Food Science, 70(2), 124–130.

    Article  Google Scholar 

  • Koca, N., Burdurlu, H. S., & Karadeniz, F. (2007). Kinetics of colour changes in dehydrated carrots. Journal of Food Engineering, 78(2), 449–455.

    Article  CAS  Google Scholar 

  • Lievonen, S. M., Laaksonen, T. J., & Roos, Y. H. (1998). Glass transition and reaction rates : nonenzymatic browning in glassy and liquid systems. Journal of Agricultural and Food Chemistry, 46, 2778–2784.

    Article  CAS  Google Scholar 

  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175.

    Article  Google Scholar 

  • Mayer, F., Czerny, M., & Grosch, W. (1999). Influence of provenance and roast degree on the composition of potent odorants in Arabica coffees. European Food Research and Technology, 209(3–4), 242–250.

    Article  CAS  Google Scholar 

  • Mayer, F., Czerny, M., & Grosch, W. (2000). Sensory study of the character impact aroma compounds of a coffee beverage. European Food Research and Technology, 211(4), 272–276.

    Article  CAS  Google Scholar 

  • Mondello, L., Casilli, A., Tranchida, P. Q., Dugo, P., Costa, R., & Festa, S. (2004). Comprehensive multidimensional GC for the characterization of roasted coffee beans. Journal of Separation Science, 27(5-6), 442–450.

    Article  CAS  Google Scholar 

  • Munro, L. J., Curioni, A., Andreoni, W., Yeretzian, C., & Watzke, H. (2003). The elusiveness of coffee aroma: new insights from a non-empirical approach. Journal of Agricultural and Food Chemistry, 51(10), 3092–3096.

    Article  CAS  Google Scholar 

  • Özdemir, M. (2000). Kinetics of color changes of hazelnuts during roasting. Journal of Food Engineering, 44(1), 31–38.

    Article  Google Scholar 

  • Redgwell, R. J., Trovato, V., Curti, D., & Fischer, M. (2002). Effect of roasting on degradation and structural features of polysaccharides in Arabica coffee beans. Carbohydrate Research, 337(5), 421–431.

    Article  CAS  Google Scholar 

  • Ribeiro, J. S., Augusto, F., Salva, T. J. G., Thomaziello, R. A., & Ferreira, M. M. C. (2009). Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Analytica Chimica Actahimica acta, 634(2), 172–179.

    Article  CAS  Google Scholar 

  • Sacchetti, G., Dimattia, C., Pittia, P., & Mastrocola, D. (2009). Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90(1), 74–80.

    Article  Google Scholar 

  • Schenker, S. (2000). Investigations on the hot air roasting of coffee beans. Swiss Federal Institute of Technology. Swiss Federal Institute of Technology.

  • Schenker, S., Heinemann, C., Huber, R., Pompizzi, R., Perren, R., & Escher, F. (2002). Impact of roasting conditions on the formation of aroma compounds in coffee beans. Food Engineering and Physical Properties, 67(1), 60–66.

    CAS  Google Scholar 

  • Semmelroch, P., & Grosch, W. (1995). Analysis of roasted coffee powders and brews by gas chromatography-olfactometry of headspace samples. LWT- Food Science and Technology, 28(3), 310–313.

    Article  CAS  Google Scholar 

  • Semmelroch, P., & Grosch, W. (1996). Studies on character impact odorants of coffee brews. Journal of Agricultural and Food Chemistry, 44(2), 537–543.

    Article  CAS  Google Scholar 

  • Semmelroch, P., Laskawy, G., Blank, I., & Grosch, W. (1995). Determination of potent odourants in roasted coffee by stable isotope dilution assays. Flavour and Fragrance Journal, 10(1), 1–7.

    Article  CAS  Google Scholar 

  • Shimoni, E., & Labuza, T. P. (2000). Degassing kinetics and sorption equilibrium of carbon dioxide in fresh roasted and ground coffee. Journal of Food Process Engineering, 23, 419–436.

    Article  Google Scholar 

  • Sikorski, Z. E., Pokorny, J., & Damodaran, S. (2008). Chaper 14. Physical and chemical interactions of components in food systems. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Food Chemistry (4th ed., p. p. 866). Boca Raton: CRC Press.

    Google Scholar 

Download references

Acknowledgments

This research was funded by Natural Sciences and Engineering Research Council (NSERC) of Canada. We also gratefully acknowledge Mother Parkers Tea & Coffee, Inc. for their funding and material supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loong-Tak Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Lim, LT. A Kinetics and Modeling Study of Coffee Roasting Under Isothermal Conditions. Food Bioprocess Technol 7, 621–632 (2014). https://doi.org/10.1007/s11947-013-1159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1159-8

Keywords

Navigation