Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 5, pp 1472–1482 | Cite as

Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical–chemical Characterization

  • Miguel A. CerqueiraEmail author
  • Maria J. Costa
  • Clara Fuciños
  • Lorenzo M. Pastrana
  • António A. Vicente
Original Paper

Abstract

This work aims at characterising polysaccharide-based films without (GA) and with the incorporation of free natamycin (GA-NA) and natamycin-loaded in a smart delivery device consisting in poly(N-isopropylacrylamide) nanohydrogels (GA-PNIPA). Transport properties (water vapour, oxygen and carbon dioxide permeabilities), mechanical properties (tensile strength and elongation-at-break), opacity, water sensitivity (moisture content and contact angle) and thermal properties (differential scanning calorimetry and thermogravimetric analyses) were evaluated. Chemical interactions were studied by means of Fourier transform infrared spectroscopy and scanning electron microscopy was used to verify the presence of natamycin and nanohydrogel particles in the film matrix. The results show that natamycin and natamycin-loaded poly(N-isopropylacrylamide) (PNIPA) nanohydrogels can be successfully added to edible films without changing their main packaging properties. However, tensile strength decreased (p < 0.05) when both natamycin and natamycin-loaded PNIPA nanohydrogels were incorporated (from 24.44 to 17.02 and 16.63 MPa, for GA-NA and GA-PNIPA, respectively). GA-NA and GA-PNIPA films are more opaque and showed to be more sensitive to water (i.e. higher values of moisture content and decrease of contact angle) than GA films. Scanning electron microscopy images confirmed the presence of natamycin and poly(N-isopropylacrylamide) nanohydrogels in the films’ matrix. Since natamycin could be successfully released from polysaccharide-based films, the system could be used as active packaging ingredient when used free in the matrix or as smart packing when loaded with PNIPA nanohydrogels.

Keywords

κ-Carragennan Locust bean gum Edible film Nanotechnology Poly(N-isopropylacrylamide) 

Notes

Acknowledgments

Miguel A. Cerqueira (SFRH/BPD/72753/2010) is a recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged.

References

  1. Atta, H. M., El-Sayed, A. S., El-Desoukey, M. A., Hassan, M., & El-Gazar, M. (2012). Biochemical studies on the natamycin antibiotic produced by Streptomyces lydicus: fermentation, extraction and biological activities. Journal of Saudi Chemical Society. doi: 10.1016/j.jscs.2012.04.001.Google Scholar
  2. Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110, 18–25.CrossRefGoogle Scholar
  3. Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. Journal of Food Science, 63, 1049–1053.CrossRefGoogle Scholar
  4. Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Carvalho, S., Quintas, M. A. C., Teixeira, J. A., et al. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82, 153–159.CrossRefGoogle Scholar
  5. Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., et al. (2009). Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 23, 1895–1902.CrossRefGoogle Scholar
  6. Cerqueira, M. A., Lima, A. M., Souza, B. W. S., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009a). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57, 1456–1462.CrossRefGoogle Scholar
  7. Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009b). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94, 372–378.CrossRefGoogle Scholar
  8. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: a comparative study. Food Hydrocolloids, 27, 175–184.CrossRefGoogle Scholar
  9. Cevher, E., Sensoy, D., Zloh, M., & Mulazimoglu, L. (2008). Preparation and characterisation of natamycin: y-cyclodextrin inclusion complex and its evaluation in vaginal mucoadhesive formulations. Journal of Pharmaceutical Sciences, 97(2008), 4319–4335. 97, 4319–4335.CrossRefGoogle Scholar
  10. Chen, J., Liu, C., Chen, Y., Chen, Y., & Chang, P. R. (2008). Structural characterization and properties of starch/konjac glucomannan blen films. Carbohydrate Polymers, 74, 946–952.CrossRefGoogle Scholar
  11. Da Silva, M. A., Iamanaka, B. T., Taniwaki, M. H., & Kieckbusch, T. G. (2012). Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packaging Technology and Science. doi: 10.1002/pts.2000.Google Scholar
  12. Dumitriu, R. P., Mitchell, G. R., & Vasile, C. (2011). Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polymer International, 60, 222–233.CrossRefGoogle Scholar
  13. Fajardo, P., Martins, J. T., Fuciños, C., Pastrana, L., Teixeira, J. A., & Vicente, A. A. (2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 101, 349–356.CrossRefGoogle Scholar
  14. FDA (U.S. Food and Drug Administration) (2012). Food additives permitted for direct addition to food for human consumption, 21CFR172.155. Title 21—food and drugs, Chapter I. Part 172.Google Scholar
  15. Fuciños, C., Guerra, N. P., Teijón, J. M., Pastrana, L. M., Rúa, M. L., & Katime, I. (2012). Use of poly(N-isopropylacrylamide) Nanohydrogels for the controlled release of pimaricin in active packaging. Journal of Food Science, 77, N21–N28.CrossRefGoogle Scholar
  16. Han, J. H., Ho, C. H. L., & Rodrigues, E. T. (2005). Intelligent packaging. In J. Han (Ed.), Innovations in food packaging (pp. 138–155). Baltimore: Elsevier.CrossRefGoogle Scholar
  17. Imran, M., Revol-Junelles, A.-M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., et al. (2012). Microstructure and physico–chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29, 407–419.CrossRefGoogle Scholar
  18. Jaiswal, M. K., Banerjee, R., Pradhan, P., & Bahadur, D. (2010). Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids and Surfaces. B, Biointerfaces, 81, 185–194.CrossRefGoogle Scholar
  19. Karlsson, A. J., Flessner, R. M., Gellman, S. H., Lynn, D. M., & Palecek, S. P. (2010). Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules, 11, 2321–2328.CrossRefGoogle Scholar
  20. Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2011). Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. Journal of Food Science, 76, R90–R102.CrossRefGoogle Scholar
  21. Kwok, D. Y., & Newmann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81, 167–249.CrossRefGoogle Scholar
  22. Lima, A. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., et al. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits—influence on fruits gas transfer rate. Journal of Food Engineering, 97, 101–109.CrossRefGoogle Scholar
  23. Martins, J. T., Cerqueira, M. A., Souza, B. W. S., Avides, M. C., & Vicente, A. A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58, 1884–1891.CrossRefGoogle Scholar
  24. Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., Cerqueira, M. A., & Vicente, A. A. (2012a). Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0851-4.Google Scholar
  25. Martins, J. T., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., & Vicente, A. A. (2012b). Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 29, 280–289.CrossRefGoogle Scholar
  26. Regulation (EC) No 1333/2008 of the European Parliament and of the council of 16 December 2008 on food additives. Official Journal of the European Union. L354/16-33.Google Scholar
  27. Ouattara, B., Simard, R. E., Piette, G., Begin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62, 139–148.CrossRefGoogle Scholar
  28. Pereira, R. N., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). Effects of electric fields on protein unfolding and aggregation: influence on edible films formation. Biomacromolecules, 11, 2912–2918.CrossRefGoogle Scholar
  29. Quijada-Garrido, I., Iglesias-González, V., Mazón-Arechederra, J. M., & Barrales-Rienda, J. M. (2007). The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass-forming liquids: 1,2,3-propantriol (glycerol). Carbohydrate Polymers, 68, 173–186.CrossRefGoogle Scholar
  30. Reps, A., Drychowski, L. J., Tomasik, J., & Winiewska, K. (2002). Natamycin in ripening cheeses. Pakistan Journal of Nutrition, 1, 243–247.CrossRefGoogle Scholar
  31. Rojas-Graü, M. A., Tapia, M. S., Rodriguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21, 118–127.CrossRefGoogle Scholar
  32. Ruiz, H. A., Cerqueira, M. A., Silva, H. D., Rodríguez-Jasso, R. M., Vicente, A. A., & Teixeira, J. A. (2013). Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymers, 92, 2154–2162.CrossRefGoogle Scholar
  33. Souza, B. W. S., Cerqueira, M. A., Ruiz, H. A., Martins, J. T., Casariego, A., Teixeira, J. A., et al. (2010a). Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 58, 11456–11462.CrossRefGoogle Scholar
  34. Souza, B. W. S., Cerqueira, M. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010b). Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids, 24, 330–335.CrossRefGoogle Scholar
  35. Sperling, L. H. (2006). Introduction to physical polymer science. New Jersey: Wiley.Google Scholar
  36. Ziani, K., Oses, J., Coma, V., & Maté, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT- Food Science and Technology, 41, 2159–2165.CrossRefGoogle Scholar
  37. Zohuriaan, M. J., & Shokrolahi, F. (2004). Thermal studies on natural and modified gums. Polymer Testing, 23, 575–579.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Miguel A. Cerqueira
    • 1
    Email author
  • Maria J. Costa
    • 1
  • Clara Fuciños
    • 2
  • Lorenzo M. Pastrana
    • 2
  • António A. Vicente
    • 1
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Biotechnology Group, Department of Analytical Chemistry and Food ScienceUniversity of VigoOurenseSpain

Personalised recommendations