Skip to main content
Log in

The Contribution of the Inherent Restricted Mobility of Glassy Sugar Matrices to the Overall Stability of Freeze-Dried Bacteria Determined by Low-Resolution Solid-State 1H-NMR

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate whether, in case of freeze-dried bacteria, the protective effect of a surrounding glassy matrix can be ascribed to its inherent restricted molecular mobility. Lactobacillus paracasei ssp. paracasei together with three different protectants (lactose, trehalose and dextran) was freeze-dried and stored at different temperatures and water activities (a w). The spin–spin relaxation time T 2 was determined by means of low resolution 1H-NMR spectroscopy and described in relation to the storage conditions and the glass transition temperature T g. Compared to the disaccharides, dextran generally showed lower absolute T 2 values and a weaker dependence on storage a w and temperature. For lactose and trehalose, the plasticising effect of water and temperature was significantly stronger. Their relaxation time T 2 was shown to be only dependent on ∆T, the temperature distance to T g. Furthermore, both disaccharides showed an increase in T 2 already 20–40 °C below T g. Thus, T g in reference to T 2 does not act as an absolute threshold. This fact could explain the finding of several publications that an absolute stability for freeze-dried bacteria can only be achieved 30–50 °C below T g. Further comparison between T 2 and the corresponding inactivation rates revealed that the relevance of mobility for the stability of lyophilisates is strongly temperature and system dependent. At low storage temperatures, a potential rate-limiting effect due to the lack of detrimental chemical and physical reactions is invisible. However, with increasing storage temperature, the restricted mobility is shown to become a rate limiting bottleneck. Thus, the harsher the environmental condition, the more relevant is the protective effect of a surrounding glassy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ablett, S., Darke, A. H., Izzard, M. J., & Lillford, P. J. (1993). Studies of the glass transition in malto-oligomers. In J. M. Blanshard (Ed.), The glassy state in foods (pp. 189–206). Nottingham: Univ. Press.

    Google Scholar 

  • Aeberhardt, K., Bui, Q. D., & Normand, V. (2007). Using low-field NMR to infer the physical properties of glassy oligosaccharide/water mixtures. Biomacromolecules, 8(3), 1038–1046.

    Article  CAS  Google Scholar 

  • Aschenbrenner, M., Kulozik, U., & Foerst, P. (2012). Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model. Cryobiology, 65(3), 308–318.

    Article  CAS  Google Scholar 

  • Bagchi, B. (2001). Relation between orientational correlation time and the self-diffusion coefficient of tagged probes in viscous liquids: A density functional theory analysis. Journal of Chemical Physics, 115(5), 2207.

    Article  CAS  Google Scholar 

  • Buera, M. P., & Karel, M. (1993). Application of the WLF equation to describe the combined effects of moisture and temperature on nonenzymatic browning rates in food systems. Journal of Food Processing and Preservation, 17(1), 31–45.

    Article  CAS  Google Scholar 

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2002). Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters, 24(19), 1587–1591.

    Article  CAS  Google Scholar 

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2003). Effects of addition of sucrose and salt, and of starvation upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp bulgaricus. Journal of Food Science, 68(8), 2538–2541.

    Article  CAS  Google Scholar 

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14(10), 835–847.

    Article  CAS  Google Scholar 

  • Chung, M. S., Ruan, R. R., Chen, P., Chung, S. H., Ahn, T. H., & Lee, K. H. (2000). Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. Journal of Food Science, 65(1), 134–138.

    Article  CAS  Google Scholar 

  • Colsenet, R., Mariette, F., & Cambert, M. (2005). NMR relaxation and water self-diffusion studies in whey protein solutions and gels. Journal of Agricultural and Food Chemistry, 53(17), 6784–6790.

    Article  CAS  Google Scholar 

  • Craig, I. D., Parker, R., Rigby, N. M., Cairns, P., & Ring, S. G. (2001). Maillard reaction kinetics in model preservation systems in the vicinity of the glass transition: Experiment and theory. Journal of Agricultural and Food Chemistry, 49(10), 4706–4712.

    Article  CAS  Google Scholar 

  • Crowe, J. H., Crowe, L. M., & Hoekstra, F. A. (1989). Phase transitions and permeability changes in dry membranes during rehydration. Journal of Bioenergetics and Biomembranes, 21(1), 77–91.

    Article  CAS  Google Scholar 

  • Crowe, J. H., Oliver, A. E., Hoekstra, F. A., & Crowe, L. M. (1997). Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology, 35(1), 20–30.

    Article  CAS  Google Scholar 

  • Crowe, J. H., Carpenter, J. F., & Crowe, L. M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology, 60(1), 73–103.

    CAS  Google Scholar 

  • Derbyshire, W., van den Bosch, M., van Dusschoten, D., MacNaughtan, W., Farhat, I. A., Hemminga, M. A., et al. (2004). Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate–water solutions. Journal of Magnetic Resonance, 168(2), 278–283.

    Article  CAS  Google Scholar 

  • Foerst, P., Reitmaier, J., & Kulozik, U. (2010). 1H NMR investigation on the role of sorbitol for the survival of Lactobacillus paracasei ssp. paracasei in vacuum-dried preparations. Journal of Applied Microbiology, 108(3), 841–850.

    Article  CAS  Google Scholar 

  • Grattard, N., Salaün, F., Champion, D., Roudaut, G., & Le Meste, M. (2002). Influence of physical state and molecular mobility of freeze-dried maltodextrin matrices on the oxidation rate of encapsulated lipids. Journal of Food Science, 67(8), 3002–3010.

    Article  CAS  Google Scholar 

  • Greenspan, L. (1977). Humidity fixed-points of binary saturated aqueous-solutions. Journal of Research of the National Bureau of Standards Section A-Physics and Chemistry, 81(1), 89–96.

    Article  Google Scholar 

  • Higl, B., Kurtmann, L., Carlsen, C. U., Ratjen, J., Foerst, P., Skibsted, L. H., et al. (2007). Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnology Progress, 23(4), 794–800.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Götz, J., & Weisser, H. (2003). Water-holding capacity and structure of hydrocolloid-gels, WPC-gels and yogurts characterised by means of NMR. Food Chemistry, 82(1), 155–160.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Götz, J., Noll, M., Wolfschoon, A., Eibel, H., & Weisser, H. (2004). Characterisation of different treated whey protein concentrates by means of low-resolution nuclear magnetic resonance. International Dairy Journal, 14(9), 817–827.

    Article  CAS  Google Scholar 

  • Kalichevsky, M. T., Jaroszkiewicz, E. M., Ablett, S., Blanshard, J. M. V., & Lillford, P. J. (1992). The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydrate Polymers, 18(2), 77–88.

    Article  CAS  Google Scholar 

  • Karmas, R., Buera, M. P., & Karel, M. (1992). Effect of glass transition on rates of nonenzymatic browning in food systems. Journal of Agricultural and Food Chemistry, 40(5), 873–879.

    Article  CAS  Google Scholar 

  • Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P., & Autio, K. (2006). Effects of sourdough and enzymes on staling of high-fibre wheat bread. Food Science and Technology, 39(5), 479–491.

    CAS  Google Scholar 

  • Koster, K. L., Lei, Y. P., Anderson, M., Martin, S., & Bryant, G. (2000). Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophysical Journal, 78(4), 1932–1946.

    Article  CAS  Google Scholar 

  • Koster, K. L., Maddocks, K. J., & Bryant, G. (2003). Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: Effects on membrane phase behaviour. European Biophysics Journal, 32(2), 96–105.

    CAS  Google Scholar 

  • Kou, Y., Dickinson, L. C., & Chinachoti, P. (2000). Mobility characterization of waxy corn starch using wide-line 1H nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 48(11), 5489–5495.

    Article  CAS  Google Scholar 

  • Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009a). Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58(2), 175–180.

    Article  CAS  Google Scholar 

  • Kurtmann, L., Skibsted, L. H., & Carlsen, C. U. (2009b). Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. Journal of Agricultural and Food Chemistry, 57(15), 6736–6741.

    Article  CAS  Google Scholar 

  • Lambelet, P., Berrocal, R., & Ducret, F. (1989). Low resolution NMR spectroscopy: A tool to study protein denaturation. I. Application to diamagnetic whey proteins. The Journal of Dairy Research, 56(02), 211–222.

    Article  Google Scholar 

  • Lewis, G. P., Derbyshire, W., Ablett, S., Lillford, P. J., & Norton, I. T. (1987). Investigations of the NMR relaxation of aqueous gels of the carrageenan family and of the effect of ionic content and character. Carbohydrate Research, 160, 397–410.

    Article  CAS  Google Scholar 

  • Li, S., Dickinson, L. C., & Chinachoti, P. (1998). Mobility of “unfreezable” and “freezable” water in waxy corn starch by 2 H and 1 H NMR. Journal of Agricultural and Food Chemistry, 46(1), 62–71.

    CAS  Google Scholar 

  • Lin, X., Ruan, R., Chen, P., Chung, M., Ye, X., & Yang, T. (2006). NMR state diagram concept. Journal of Food Science, 71(9), R136–R145.

    Article  CAS  Google Scholar 

  • Miao, S., Mills, S., Stanton, C., Fitzgerald, G. F., Roos, Y., & Ross, R. P. (2008). Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Science & Technology, 88(1), 19–30.

    CAS  Google Scholar 

  • Partanen, R., Marie, V., MacNaughtan, W., Forssell, P., & Farhat, I. (2004). 1 H-NMR study of amylose films plasticised by glycerol and water. Carbohydrate Polymers, 56(2), 147–155.

    Article  CAS  Google Scholar 

  • Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiology and Molecular Biology Reviews, 58(4), 755–805.

    CAS  Google Scholar 

  • Roos, Y. H. (1993). Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 238, 39–48.

    Article  CAS  Google Scholar 

  • Roos, Y. H., & Himberg, M. J. (1994). Nonenzymatic browning behavior, as related to glass-transition, of a food model at chilling temperatures. Journal of Agricultural and Food Chemistry, 42(4), 893–898.

    Article  CAS  Google Scholar 

  • Roos, Y. H., Jouppila, K., & Zielasko, B. (1996). Non-enzymatic browning-induced water plasticization. Journal of Thermal Analysis and Calorimetry, 47(5), 1437–1450.

    Article  CAS  Google Scholar 

  • Roudaut, G., Farhat, I., Poirier-Brulez, F., & Champion, D. (2009). Influence of water, temperature and sucrose on dynamics in glassy starch-based products studied by low field 1H NMR. Carbohydrate Polymers, 77(3), 489–495.

    Article  CAS  Google Scholar 

  • Ruan, R. R., Long, Z., Song, A., & Chen, P. L. (1998). Determination of the glass transition temperature of food polymers using low field NMR. Lebensmittel-Wissenschaft und Technologie, 31(6), 516–521.

    CAS  Google Scholar 

  • Santivarangkna, C., Higl, B., & Foerst, P. (2008). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiology, 25(3), 429–441.

    Article  CAS  Google Scholar 

  • Sapru, V., & Labuza, T. P. (1993). Glassy state in bacterial spores predicted by polymer glass-transition theory. Journal of Food Science, 58(2), 445–448.

    Article  Google Scholar 

  • Schmidt, S. J. (2004). Water and solids mobility in foods. Advances in Food and Nutrition Research, 48, 1–101.

    Article  CAS  Google Scholar 

  • Schoug, A., Mahlin, D., Jonson, M., & Hakansson, S. (2010). Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose. Journal of Applied Microbiology, 108(3), 1032–1040.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H., & Reid, D. S. (1991). Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30(2–3), 115–360.

    Article  CAS  Google Scholar 

  • Sun, W. Q. (1997). Glassy state and seed storage stability: The WLF kinetics of seed viability loss at T > Tg and the plasticization effect of water on storage stability. Annals of Botany, 79(3), 291–297.

    Article  Google Scholar 

  • Sun, W., Leopold, A., Crowe, L., & Crowe, J. (1996). Stability of dry liposomes in sugar glasses. Biophysical Journal, 70(4), 1769–1776.

    Article  CAS  Google Scholar 

  • Valdez, G., Giori, G., Ruiz Holgado, A., & Oliver, G. (1983). Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology, 20(5), 560–566.

    Article  Google Scholar 

  • van den Dries, I. J., van Dusschoten, D., & Hemminga, M. A. (1998). Mobility in maltose-water glasses studied with 1H NMR. The Journal of Physical Chemistry. B, 102(51), 10483–10489.

    Article  Google Scholar 

  • Vereyken, I. J., van Albert Kuik, J., Evers, T. H., Rijken, P. J., & Kruijff, B. (2003). Structural requirements of the fructan–lipid interaction. Biophysical Journal, 84(5), 3147–3154.

    Article  CAS  Google Scholar 

  • Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77(14), 3701–3707.

    Article  CAS  Google Scholar 

  • Wolfe, J. (1987). Lateral stresses in membranes at low water potential. Functional Plant Biology, 14(3), 311–318.

    Google Scholar 

  • Yoshioka, S., Aso, Y., & Kojima, S. (1997). Dependence of the molecular mobility and protein stability of freeze-dried γ-globulin formulations on the molecular weight of dextran. Pharmaceutical Research, 14(6), 736–741.

    Article  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., Nakai, Y., & Kojima, S. (1998). Effect of high molecular mobility of poly (vinyl alcohol) on protein stability of lyophilized γ–globulin formulations. Journal of Pharmaceutical Sciences, 87(2), 147–151.

    Article  CAS  Google Scholar 

  • Yoshioka, S., Aso, Y., & Kojima, S. (1999). The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature. Pharmaceutical Research, 16(1), 135–140.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) Project Reference: KU 750/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Aschenbrenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschenbrenner, M., Grammueller, E., Kulozik, U. et al. The Contribution of the Inherent Restricted Mobility of Glassy Sugar Matrices to the Overall Stability of Freeze-Dried Bacteria Determined by Low-Resolution Solid-State 1H-NMR. Food Bioprocess Technol 7, 1012–1024 (2014). https://doi.org/10.1007/s11947-013-1095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1095-7

Keywords

Navigation