Skip to main content
Log in

Effect of Temperature on the Crystalline Form and Fat Crystal Network of Two Model Palm Oil-Based Shortenings During Storage

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Fat products experienced undesirable microstructural property changes due to the temperatures during transportation and storage. In this study, the lipid composition and solid fat content (SFC) of two model palm oil-based shortenings, which are denoted as shortening A (melting point of 35.1°C) and shortening B (melting point of 51.2°C), were evaluated, and their crystallization behavior and polymorphism during storage at various temperatures (−10 °C to 30 °C) was examined by X-ray diffraction (XRD) and polarized light microscopy (PLM). The fractal dimension (D b) was calculated to qualify the change in the crystal network during storage. The aggregation of high-melting triacylglycerols (TAGs) nanostructure and the formation of the most stable β polymorph were observed in shortening at higher temperatures (≥0 °C) during storage. At the same temperature, the intensity of β crystals in the two samples increased as the storage time increased, and this trend was obvious at high temperatures (≥10 °C). In addition, the intensity of the β crystals in the two samples gradually increased as the temperature increased, and the size of the crystalline particles became larger. The crystal size in shortening A was larger than that in shortening B at high temperatures (≥10 °C). The crystal network of shortening B was denser than that of shortening A. The D b value reached a maximum at 10 °C and 30 °C for shortening A and B, respectively. These findings have important implications on the storage stability and functional properties of palm oil-based shortenings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PO:

Palm oil

IV:

Iodine value

DSC:

Differential scanning calorimetry

FAC:

Fatty acid composition

FAME:

Fatty acid methyl esters

pNMR:

Pulsed Nuclear Magnetic resonance

TAG:

Triacylglycerol

PLM:

Polarized light microscope

XRD:

X-ray diffraction

D b :

Fractal dimension

S:

Saturated fatty acid

U:

Unsaturated fatty acid

SFC:

Solid fat content

POP:

1,3-Dipalmitoyl-2-oleoyl-glycerol

POO:

1-Palmitoyl-2,3-dioleoyl-glycerol

PPO:

1,2-Dipalmitoyl-3-oleoyl-glycerol

POS:

1-Palmitoyl-2-oleoyl-3-stearoyl-glycerol

SOS:

1,3-Distearoyl-2-oleoyl-sn-glycerol

References

  • Aini, I. N., & Miskandar, M. S. (2007). Utilization of palm oil and palm products in shortenings and margarines. European Journal of Lipid Science and Technology, 109(4), 422–432.

    Article  CAS  Google Scholar 

  • AOCS. (1990). Official methods and recommended practices of the American oil Chemists' Society (4th edition). Champaign: American Oil Chemists' Society.

    Google Scholar 

  • AOCS. (2004). Official methods and recommended practices of the American oil Chemists' Society (5th edtion). Champaign: American Oil Chemists' Society.

    Google Scholar 

  • Arifi, N., Cheong, L.-Z., Koh, S.-P., Long, K., Tan, C.-P., Yusoff, M. S. A., et al. (2011). Physicochemical properties and sensory attributes of medium- and long-chain triacylglycerols (MLCT)-enriched bakery shortening. Food and Bioprocess Technology, 4(4), 587–596.

    Article  Google Scholar 

  • Awad, T. S., Rogers, M. A., & Marangoni, A. G. (2004). Scaling behavior of the elastic modulus in colloidal networks of fat crystals. The Journal of Physical Chemistry. B, 108(1), 171–179.

    Article  CAS  Google Scholar 

  • Blaurock, A. E. (1999). Fundamental understanding of the crystallization of oils and fats. In Widlak (Ed.), Physical properties of fats, oils, and emulsifiers (pp. 5–6). Champaign: American Oil Chemists’ Society Press.

  • Chen, C.-W., Chong, C.-L., Ghazali, H. M., & Lai, O.-M. (2007). Interpretation of triacylglycerol profiles of palm oil, palm kernel oil and their binary blends. Food Chemistry, 100(1), 178–191.

    Article  CAS  Google Scholar 

  • Chong, C. L., Kamarudin, Z., Lesieur, P., Marangoni, A., Bourgaux, C., & Ollivon, M. (2007). Thermal and structural behaviour of crude palm oil: crystallisation at very slow cooling rate. European Journal of Lipid Science and Technology, 109(4), 410–421.

    Article  CAS  Google Scholar 

  • Chu, B.-S., Ghazali, H. M., Lai, O.-M., Cheman, Y. B., & Yusof, S. (2002). Physical and chemical properties of a lipase-transesterified palm stearin/palm kernel olein blend and its isopropanol-solid and high melting triacylglycerol fractions. Food Chemistry, 76(2), 155–164.

    Article  CAS  Google Scholar 

  • Dietler, G., Aubert, C., Cannell, D. S., & Wiltzius, P. (1986). Gelation of colloidal silica. Physical Review Letters, 57(24), 3117–3120.

    Article  CAS  Google Scholar 

  • Garbolino, C., Bartoccini, M., & Flöter, E. (2005). The influence of emulsifiers on the crystallisation behaviour of a palm oil-based blend. European Journal of Lipid Science and Technology, 107(9), 616–626.

    Article  CAS  Google Scholar 

  • Golding, M., & Pelan, E. (2008). Application of emulsifiers to reduce fat and enhance nutritional quality. In Hasenhuettl & Hartel (Eds.), Food emulsifiers and their applications (pp. 327–348). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Goli, S. A. H., Sahri, M. M., Kadivar, M., & Keramat, J. (2009). The production of an experimental table margarine enriched with conjugated linoleic acid (CLA): physical properties. Journal of American Oil Chemistry Society, 86(5), 453–458.

    Article  CAS  Google Scholar 

  • Haighton, A. J. (1976). Blending, chilling, and tempering of margarines and shortenings. Journal of American Oil Chemistry Society, 53(6), 397–399.

    Article  CAS  Google Scholar 

  • Herrera, M. L., & Hartel, R. W. (2000). Effect of processing conditions on crystallization kinetics of a milk fat model system. Journal of American Oil Chemistry Society, 77(11), 1177–1188.

    Article  CAS  Google Scholar 

  • Ibrahim, N. H., Idris, N. A., Abdullah, A., Said, M., Dian, N. L. H. M., & Man, Y. C. (2006). Polymorphism of anhydrous milk fat as affected by the addition of palm stearins. Journal of oil palm research, 4, 58–64.

    Google Scholar 

  • Idris, A., Zain, N. M., & Noordin, M. Y. (2007). Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 207(1–3), 324–339.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Mizuguchi, T., & Kondo, S. (1980). Studies on granular crystals growing in palm oil (In Japanese). Journal of Japanese Oil Chemistry and Society, 29, 235–242.

    Article  CAS  Google Scholar 

  • Jakab, A., He’berger, K., & Forgács, E. (2002). Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography. A, 976(1), 255–263.

    Article  CAS  Google Scholar 

  • Jin, Q.-Z., Gao, H.-Y., Shan, L., Liu, Y.-F., & Wang, X.-G. (2007). Study on grainy crystals in edible beef tallow shortening. Food Research International, 40(7), 909–914.

    Article  CAS  Google Scholar 

  • Kalnin, D., Lesieur, P., Artzner, F., Keller, G., & Ollivon, M. (2005). Systematic investigation of lard polymorphism using combined DSC and time-resolved synchrotron X-ray diffraction. European Journal of Lipid Science and Technology, 107, 594–606.

    Article  CAS  Google Scholar 

  • Lawler, P. J., & Dimick, P. S. (2002). Crystallization and polymorphism of fats. In Akoh & Min (Eds.), Food lipids; chemistry, nutrition, and biotechnology (3rd ed., pp. 245–266). New York: CRC Press.

    Google Scholar 

  • Lee, J. H., Akoh, C. C., Himmelsbach, D. S., & Lee, K. T. (2008). Preparation of interesterified plastic fats from fats and oils free of trans fatty acid. Journal of Agricultural and Food Chemistry, 56(11), 4039–4046.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. (2002). The nature of fractility in fat crystal networks. Trends in Food Science & Technology, 13(2), 37–47.

    Article  CAS  Google Scholar 

  • Mattil, K. F. (1964). Plastic shortening agents. In Swern (Ed.), Bailey’s industrial oil and fat products (pp. 265–388). New York: Interscience Publishers.

  • Meng, Z., Liu, Y.-F., Jin, Q.-Z., Huang, J.-H., Song, Z.-H., Wang, F.-Y., et al. (2010). Characterization of graininess formed in all beef tallow-based shortening. Journal of Agricultural and Food Chemistry, 58(21), 11463–11470.

    Google Scholar 

  • Meng, Z., Liu, Y.-F., Shan, L., Jin, Q.-Z., & Wang, X.-G. (2010). Reduction of graininess formation in beef tallow-based plastic fats by chemical interesterification of beef tallow and canola oil. Journal of American Oil Chemistry Society, 87(12), 1435–1442.

    Article  CAS  Google Scholar 

  • Meng, Z., Liu, Y.-F., Shan, L., Jin, Q.-Z., Wang, F.-Y., & Wang, X.-G. (2011). Specialty fats from beef tallow and canola oil: establishment of reaction conditions, characterization of products, and evaluation of crystal stability. Food Biophysics, 6(1), 115–126.

    Article  Google Scholar 

  • Miura, S., & Konishi, H. (2001). Crystallization behavior of 1, 3-dipalmitoyl-2-oleoyl-glycerol and 1-palmitoyl-2,3-dioleoylglycerol. European Journal of Lipid Science and Technology, 103, 804–809.

    Article  CAS  Google Scholar 

  • Narine, S. S., & Marangoni, A. G. (1999a). Relating structure of fat crystal networks to mechanical properties: a review. Food Research International, 32(4), 227–248.

    Article  CAS  Google Scholar 

  • Narine, S. S., & Marangoni, A. G. (1999b). Fractal nature of fat crystal networks. Physical Review E, 59(2), 1908–1920.

    Article  CAS  Google Scholar 

  • Piska, I., Zárubová, M., Louzecký, T., Karami, H., & Filip, V. (2006). Properties and crystallization of fat blends. Journal of Food Engineering, 77(3), 433–438.

    Article  CAS  Google Scholar 

  • Ribeiro, A. P. B., Basso, R. C., Grimaldi, R., Gioielli, L. A., Dos-Santos, A. O., Cardoso, L. P., et al. (2009). Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization properties of canola oil and fully hydrogenated cottonseed oil blends. Food Research International, 42(8), 1153–1162.

    Google Scholar 

  • Rousseau, D., Marangoni, A. G., & Jeffrey, K. R. (1998). The influence of chemical interesterification on the physicochemical properties of complex fat systems. 2. Morphology and polymorphism. Journal of American Oil Chemistry Society, 75(12), 1833–1839.

    Article  CAS  Google Scholar 

  • Rousseau, D., Hodge, S. M., Nickerson, M. T., & Paulson, A. T. (2005). Regulating the β′→β polymorphic transition in food fats. Journal of American Oil Chemistry Society, 82(1), 7–12.

    Article  CAS  Google Scholar 

  • Sabine, B. D., & Claude, D. (2004). Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings. Food Research International, 37(10), 941–948.

    Article  Google Scholar 

  • Sabine, B. D., & Véronique, G. (2007). Comparative analysis of triacylglycerol composition, melting properties and polymorphic behavior of palm oil and fractions. European Journal of Lipid Science and Technology, 109(4), 359–372.

    Article  Google Scholar 

  • Saberi, A. H., Lai, O.-M., & Miskandar, M. S. (2011). Melting and solidification properties of palm-based diacylglycerol, palm kernel olein, and sunflower oil in the preparation of palm-based diacylglycerol-enriched soft tub margarine. Food and Bioprocess Technology, 2012, 5(5), 1674–1685.

    Article  Google Scholar 

  • Shiota, M., Iwasawa, A., Kotera, M., Konno, M., Isogai, T., & Tanaka, L. (2011). Effect of fatty acid composition of monoglycerides and shear on the polymorph behavior in water-in-palm oil-based blend. Journal of the American Oil Chemists' Society, 88(8), 1103–1111.

    Article  CAS  Google Scholar 

  • Sukumar, D., Maya, P., & Belur, R. (2012). Lokesh lipase-mediated interesterification of oils for improving rheological, heat transfer properties and stability during deep-fat frying. Food and Bioprocess Technology, 5(5), 1630–1641.

    Article  Google Scholar 

  • Tanaka, L., Miura, S., & Yoshioka, T. (2007). Formation of granular crystals in margarine with excess amount of palm oil. Journal of American Oil Chemistry Society, 84(5), 421–426.

    Article  CAS  Google Scholar 

  • Tang, D.-M., & Marangoni, A. G. (2006). Microstructure and fractal analysis of fat crystal networks. Journal of American Oil Chemistry Society, 83(5), 377–388.

    Article  CAS  Google Scholar 

  • Toro-Vazquez, J. F., Briceno-Montelongo, M., Dibildox-Alvarado, E., Charo-Alonso, M., & Reyes-Hernández, J. (2000). Crystallization kinetics of palm stearin in blends with sesame seed oil. Journal of American Oil Chemistry Society, 77(3), 297–310.

    Article  CAS  Google Scholar 

  • Vreeker, R., Hoekstra, L. L., Den Boer, D. C., & Agterof, W. G. M. (1992). The fractal nature of fat crystal networks. Colloids and surfaces, 65(2–3), 185–189.

    Article  CAS  Google Scholar 

  • Watanabe, A., Tashima, I., Matsuzaki, N., Kurashige, J., & Sato, K. (1992). On the formation of granular crystals in fat blends containing palm oil. Journal of American Oil Chemistry Society, 69(11), 1077–1080.

    Article  CAS  Google Scholar 

  • Wiedermann, L. H. (1978). Margarine and margarine oil, formulation and control. Journal of American Oil Chemistry Society, 55(11), 823–829.

    Article  CAS  Google Scholar 

  • Wright, A., Scanlon, M. G., Hartel, R. W., & Marangoni, A. G. (2001). Rheological properties of milkfat and butter. Journal of Food Science, 66(8), 1056–1071.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the State Key Program of National Natural Science of China (No. 31130042 and No. 20976061), the National Key Technology R&D Program (No. 2012BAD37B01), NCET-10-0395 and the Fundamental Research Funds for the Central Universities, SCUT (No. 2011ZZ0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, L., Xie, H. et al. Effect of Temperature on the Crystalline Form and Fat Crystal Network of Two Model Palm Oil-Based Shortenings During Storage. Food Bioprocess Technol 7, 887–900 (2014). https://doi.org/10.1007/s11947-013-1078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1078-8

Keywords

Navigation