Food and Bioprocess Technology

, Volume 7, Issue 1, pp 62–70 | Cite as

Stable Isotope Ratios and Aroma Profile Changes Induced Due to Innovative Wine Dealcoholisation Approaches

  • Bruno Fedrizzi
  • Enrico Nicolis
  • Federica Camin
  • Enrico Bocca
  • Cristina Carbognin
  • Matthias Scholz
  • Paolo Barbieri
  • Fabio Finato
  • Roberto Ferrarini
Original Paper

Abstract

The high ethanol level in wine has become an important issue for all the main wine producing countries. Several techniques are available to the wine industry to reduce the ethanol content; among them, the membrane contactors are certainly one of the newest. Very few studies on the effect of this practice on the wine quality and aroma profile and on the stable isotopes composition are available. A pilot and industrial plant equipped with the membrane contactor system were used in the study in the dealcoholisation on several white and red wines. Significant changes for several classes of aroma compounds in both pilot- and industrial-scale experiments were observed, even though these changes were not always in perfect agreement with the sensory evaluation carried out. Finally, modifications on the δ18O of up to 1 ‰ for 2 % v/v and of up to 4 ‰ for 8 % v/v ethanol removal were encountered. An increase of δ13C of ethanol of up to 1.1 ‰ for 2 % and of up to 2.3 ‰ for 4 % of dealcoholisation rate was also observed. Dealcoholisation via membrane contactor seemed to affect the overall wine composition (aroma and flavour), even though the main concern resided on the alteration of the isotopic composition which could be linked to product authenticity issues.

Keywords

Membrane contactor Dealcoholisation Aroma compounds Stable isotope ratios 

References

  1. Arriagada-Carrazana, J. P., Saez-Navarrete, C., & Bordeu, E. (2005). Membrane filtration effects on aromatic and phenolic quality of Cabernet Sauvignon wines. Journal of Food Engineering, 68(3), 363–368.CrossRefGoogle Scholar
  2. Baudler, R., Adam, L., Rossmann, A., Versini, G., & Engel, K. H. (2006). Influence of the distillation step on the ratios of stable isotopes of ethanol in cherry brandies. Journal of Agricultural and Food Chemistry, 54, 864–869.CrossRefGoogle Scholar
  3. Bindon, K. A., Dry, P. R., & Loveys, B. R. (2008). The interactive effect of pruning level and irrigation strategy on grape berry ripening and composition in Vitis vinifera L. cv. Shiraz. South African Journal of Enology and Viticulture, 29, 71–78.Google Scholar
  4. Boulton, R. (2009). In Asve (Ed.), American society for enology and viticulture 60th annual meeting. CA: Napa.Google Scholar
  5. Cappa, C. C., Drisdell, W. S., Smith, J. D., Saykally, R. D., & Cohen, R. C. (2005). Isotope fractionation of water during evaporation without condensation. The Journal of Physical Chemistry B, 109, 24391–24400.CrossRefGoogle Scholar
  6. DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278(5338), 680–686.CrossRefGoogle Scholar
  7. Diban, N., Athes, V., Bes, M., & Souchon, I. (2008). Ethanol and aroma compounds transfer study for partial dealcoholisation of wine using membrane contactor. Journal of Membrane Science, 311, 136–146.CrossRefGoogle Scholar
  8. Fedrizzi, B., Zapparoli, G., Finato, F., Tosi, E., Turri, A., Azzolini, M., et al. (2011). Model aging and oxidation effects on varietal, fermentative, and sulfur compounds in a dry botrytized red wine. Journal of Agricultural and Food Chemistry, 59, 1804–1813.CrossRefGoogle Scholar
  9. Fudge, A. L., Ristic, R., Wollan, D., & Wilkinson, K. L. (2011). Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Australian Journal of Grape and Wine Research, 17(2), S41–S48.CrossRefGoogle Scholar
  10. Gambuti, A., Rinaldi, A., Lisanti, M. T., Pessina, R., & Moio, L. (2011). Partial dealcoholisation of red wines by membrane contactor technique: influence on colour, phenolic compounds and saliva precipitation index. European Food Research International, 233, 647–655.CrossRefGoogle Scholar
  11. Hogan, P. A., Canning, R. P., Peterson, P. A., Johnson, R. A., & Michaels, A. S. (1998). A new option: osmotic distillation. Chemcal and Engineering Progress.Google Scholar
  12. Jancso, G., & Van Hook, W. A. (1974). Isotopic fractionation of water during evaporation. Chemical Review, 7(545–678).Google Scholar
  13. Kutyna, D. R., Varela, C., Henschke, P. A., Chambers, P. J., & Stanley, G. A. (2010). Microbiological approaches to lowering ethanol concentration in wine. Trends in Food Science and Technology, 21(6), 293–302.CrossRefGoogle Scholar
  14. Labanda, J., Vichi, S., Lorens, J., & Lopez-Tamames, E. (2009). Membrane separation technology for the reduction of alcoholic degree of a white wine model. LWT- Food Science and Technology, 42, 1390–1395.CrossRefGoogle Scholar
  15. Larsson, C., Pahlman, I. L., Ansell, R., Rigoulet, M., Adler, L., & Gustafsson, L. (1998). The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 14(4), 347–357.CrossRefGoogle Scholar
  16. Liguori, L., Russo, P., Albanese, D., & Di Matteo, M. (2012). Effect of process parameters on partial dealcoholization of wine by osmotic distillation. Food and Bioprocess Technology. doi:10.1007/s11947-012-0856-z.
  17. Longinelli, A., & Selmo, E. (2003). Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology, 270(1–2), 75–88.Google Scholar
  18. Makarytchev, S. V., Langrish, T. A. G., & Fletcher, D. E. (2004). Mass transfer analysis of spinning cone columns using CFD. Chemical Engineering Research and Design, 82(A6), 752–761.CrossRefGoogle Scholar
  19. Noble, A. C. (1998). Why do wines taste bitter and feel astringent? In Chemistry of Wine Flavor, vol. 714 (pp. 156–165). American Chemical Society.Google Scholar
  20. Noble, A. C., Arnold, R. A., Buechsenstein, J., Leach, E. J., Schmidt, J. O., & Stern, P. M. (1987). Modification of a standardized system of wine aroma terminology. A American Journal of Enology and Viticulture, 38(2), 143–146.Google Scholar
  21. Pickering, G. J. (2000). Low- and reduced-alcohol wine: a review. Journal of Wine Research, 11(2), 129–144.CrossRefGoogle Scholar
  22. Pilipovik, M. V., & Riverol, C. (2005). Assessing dealcoholisation systems based on reverse osmosis. Journal of Food Engineering, 68, 437–441.CrossRefGoogle Scholar
  23. Rossmann, A., Reniero, F., Moussa, I., Schmidt, H.-L., Versini, G., & Merle, M. H. (1999). Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany. European Food Research and Technology, 208, 400–407.Google Scholar
  24. Sykes, S. J., Casimir, D. J., & Prince, R. G. H. (1992). Recent advances in spinning cone column. Food Australia, 44, 462–464.Google Scholar
  25. Tosi, E., Fedrizzi, B., Azzolini, M., Finato, F., Simonato, B., & Zapparoli, G. (2012). Effects of noble rot on must composition and aroma profile of Amarone wine produced by the traditional grape withering protocol. Food Chemistry, 130(2), 370–375.CrossRefGoogle Scholar
  26. Valenti, L., Mattivi, F., Bravi, M., Dell’Orto, M., & Ghiglieno, I. (2011). Pruning and shade control the sugar level. Informatore Agrario, 67(13), 22–24.Google Scholar
  27. Varavuth, S., Jiraratananon, R., & Atchariyawut, S. (2009). Experimental study on dealcoholization of wine by osmotic distillation process. Separation anf Purification Technology, 66, 313–321.CrossRefGoogle Scholar
  28. Vincze, I., Stefanovits-Banyai, E., & Vatai, G. (2006). Using nanofiltration and reverse osmosis for the concentration of seabuckthorn (Hippophae rhamnoides L.) juice. Desalination, 200(1–3), 528–530.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bruno Fedrizzi
    • 1
    • 6
  • Enrico Nicolis
    • 2
  • Federica Camin
    • 3
  • Enrico Bocca
    • 4
  • Cristina Carbognin
    • 2
  • Matthias Scholz
    • 3
  • Paolo Barbieri
    • 5
  • Fabio Finato
    • 1
  • Roberto Ferrarini
    • 2
  1. 1.Unione Italiana Vini Soc. Coop.VeronaItaly
  2. 2.Dipartimento di BiotecnologieUniversità degli Studi di VeronaSan FlorianoItaly
  3. 3.Fondazione Edmund MachIASMA Research and Innovation CentreS. Michele all’AdigeItaly
  4. 4.Enologica VasonPedemonteItaly
  5. 5.JU.CLA.S.Settimo di PescantinaItaly
  6. 6.Wine Science Programme, School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations