Food and Bioprocess Technology

, Volume 7, Issue 3, pp 761–773 | Cite as

Influence of Pulsed Electric Field Protocols on the Reversible Permeabilization of Rucola Leaves

  • Katarzyna DymekEmail author
  • Petr Dejmek
  • Federico Gómez Galindo
Original Paper


Reversible electropermeabilization of plant tissues with heterogeneous structure represents a technological challenge as the response of the different structures within the same specimen to the application of electric field may differ due to different cell sizes, extracellular space configurations, and electrical properties. The influence of five different pulsed electric field protocols with different pulse polarity, number of pulses (25, 50, 75, 100, 250, and 500), and intervals between pulses (no intervals and 1- and 2-ms intervals) on the reversible permeabilization of rucola (Eruca sativa) leaves was investigated. The electric field intensity was 600 V/cm. Electrical resistance of the bulk tissue was measured before and after electroporation, and propidium iodide was used to analyze the electroporation at the surface of the leaf. Leaf viability was assessed from survival in storage, and cell viability was investigated with fluorescein diacetate. Results indicate that the viability of the leaves could not be predicted by measurements of electrical resistance or permeabilization levels of the leaf surface. Higher survival rate was demonstrated when applying bipolar pulses compared with monopolar pulses, but the latter proved to be more effective than bipolar pulses for permeabilizing the surface of the leaves. Longer intervals between bipolar pulses resulted in increased viability preservation, while the number of electroporated cells on the leaf surface was comparable for all tested protocols.


Plant tissue Electroporation Electrical resistance Survival 



The research leading to these results received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. 245280, also known under the acronym PRESERF.


  1. Asavasanti, S., Ristenpart, W., Stroeve, P., & Barrett, D. M. (2011). Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. Journal of Food Science, 76(1), E98–E111.CrossRefGoogle Scholar
  2. Ben Ammar, J., Lanoisellé, J.-L., Lebovka, N., Van Hecke, E., & Vorobiev, E. (2011). Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. Journal of Food Science, 76(1), E90–E97.CrossRefGoogle Scholar
  3. Benz, R., & Zimmermann, U. (1981). The resealing process of lipid bilayers after reversible electrical breakdown. Biochimica et Biophysica Acta, 640(1), 169–178.CrossRefGoogle Scholar
  4. Berger, F., Linstead, P., Dolan, L., & Haseloff, J. (1998). Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Developmental Biology, 194(2), 226–234.CrossRefGoogle Scholar
  5. Berridge, M. J., Bootman, M. D., & Lipp, P. (1998). Calcium—a life and death signal. Nature, 395(6703), 645–648.CrossRefGoogle Scholar
  6. Beveridge, J. R., Wall, K. A., MacGregor, S. J., Anderson, J. G., & Rowan, N. (2003). Pulsed electric field in inactivation of spoilage microorganisms in alcoholic beverages and the influence of pulse profile. Proceedings of the IEEE, 92(7), 1138–1143.CrossRefGoogle Scholar
  7. Beveridge, J. R., MacGregor, S. J., Anderson, J. G., & Fouracre, R. A. (2005). The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Transactions on Plasma Science, 33(4), 1287–1293.CrossRefGoogle Scholar
  8. Bilska, A. O., DeBruin, K. A., & Krassowska, W. (2000). Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation. Bioelectrochemistry, 51(2), 133–143.CrossRefGoogle Scholar
  9. Bouzrara, H., & Vorobiev, E. (2000). Beet juice extraction by pressing and pulsed electric fields. International Sugar Journal, 102(1216), 194–200.Google Scholar
  10. Buescher, E. S., & Schoenbach, K. H. (2003). Effects of submicrosecond, high intensity pulsed electric fields on living cells—intracellular electromanipulation. IEEE Transactions on Dielectrics and Electrical Insulation, 10(5), 788–794.CrossRefGoogle Scholar
  11. Chalermchat Y. (2005). Effects of pulsed electric fields on plant tissue. Ph.D. thesis, Department of Food Technology, Engineering and Nutrition, Lund University, Lund.Google Scholar
  12. Chalermchat, Y., Malangone, L., & Dejmek, P. (2010). Electropermeabilization of apple tissue: effect of cell size, cell size distribution and cell orientation. Biosystems Engineering, 105(3), 357–366.CrossRefGoogle Scholar
  13. Charlene, A. J., Atsushi, H., & Wildman, S. G. (1978). Evidence that the amount of chloroplast DNA exceeds that of nuclear DNA in mature leaves. The Journal of Cell Biology, 79(3), 631–636.CrossRefGoogle Scholar
  14. Coley, P. D. (1980). Effects of leaf age and plant life history patterns on herbivory. Nature, 284(5756), 545–546.CrossRefGoogle Scholar
  15. Esser, A. T., Smith, K. C., Gowrishankar, T. R., Vasilkoski, Z., & Weaver, J. C. (2010). Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophysical Journal, 98(11), 2506–2514.CrossRefGoogle Scholar
  16. Evrendilek, G. A., & Zhang, Q. H. (2005). Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli O157:H7. Journal of Food Engineering, 68(2), 271–276.CrossRefGoogle Scholar
  17. Evrendilek, G. A., Zhang, Q. H., & Richter, E. R. (1999). Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields. Journal of Food Protection, 62(7), 793–796.Google Scholar
  18. Gabriel, B., & Teissié, J. (1994). Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. European Journal of Biochemistry, 223(1), 25–33.CrossRefGoogle Scholar
  19. Gabriel, B., & Teissié, J. (1997). Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophysical Journal, 73(5), 2630–2637.CrossRefGoogle Scholar
  20. Gabriel, B., & Teissié, J. (1999). Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophysical Journal, 76(4), 2158–2165.CrossRefGoogle Scholar
  21. Glaser, R., Leikin, S., Chernomordik, L., Pastushenko, V., & Sokirko, A. (1988). Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta, 940(2), 275–287.CrossRefGoogle Scholar
  22. Golzio, M., Teissié, J., & Rols, M.-P. (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proceedings of the National Academy of Sciences, 99(3), 1292–1297.CrossRefGoogle Scholar
  23. Gómez Galindo, F., Wadsö, L., Vicente, A., & Dejmek, P. (2008). Exploring metabolic responses of potato tissue induced by electric pulses. Food Biophysics, 3(4), 352–360.CrossRefGoogle Scholar
  24. Hapala, I. (1997). Breaking the barrier: methods for reversible permeabilization of cellular membranes. Critical Reviews in Biotechnology, 17(2), 105–122.CrossRefGoogle Scholar
  25. Hill, R. M., Dissado, L. A., & Pathmanathan, K. (1987). The low-frequency dielectric properties of leaves. Journal of Biological Physics, 15(1), 2–16.CrossRefGoogle Scholar
  26. Khan, O. G. M. & El-Hag, A. H. (2011). Biological cell electroporation using nanosecond electrical pulses. In: Proceedings of 1st Middle East Conference on Biomedical Engineering (MECBME), 21–24 February 2011, Sharjah.Google Scholar
  27. Kotnik, T., Mir, L., Flisar, K., Puc, M., & Miklavcic, D. (2001). Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part I. Increased efficiency of permeabilization. Bioelectrochemisty, 54(1), 83–90.CrossRefGoogle Scholar
  28. Lebar, A. M., & Miklavčič, D. (2001). Cell electropermeabilization to small molecules in vitro: control by pulse parameters. Radiology and Oncology, 35(3), 193–202.Google Scholar
  29. Mañas, P., Barsotti, L., & Cheftel, J. C. (2001). Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents. Innovative Food Science and Emerging Technologies, 2(4), 239–249.CrossRefGoogle Scholar
  30. Martín-Belloso, O., Vega-Mercado, H., Qin, B. L., Chang, F. J., Barbosa-Canovas, G. V., & Swanson, B. C. (1997). Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. Journal of Food Processing and Preservation, 21(3), 193–208.CrossRefGoogle Scholar
  31. Neumann, E., & Rosenhec, K. (1972). Permeability changes induced by electric impulses in vesicular membranes. The Journal of Membrane Biology, 10(1), 279–290.CrossRefGoogle Scholar
  32. Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal, 1(7), 841–845.Google Scholar
  33. Pakhomov, A. G., Miklavčič, D., & Markov, M. S. (2010). Advanced electroporation techniques in biology and medicine. New York: CRC.Google Scholar
  34. Phillips, M., Maor, E., & Rubinsky, B. (2011). Principles of tissue engineering with nonthermal irreversible electroporation. Journal of Heat Transfer, 133(1).Google Scholar
  35. Phoon, P. Y., Galindo, F. G., Vicente, A., & Dejmek, P. (2008). Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 88(1), 144–148.CrossRefGoogle Scholar
  36. Psaras, G. K., & Rhizopoulou, S. (1995). Mesophyll structure during leaf development in Ballota acetabulosa. The New Phytologist, 131(3), 303–309.CrossRefGoogle Scholar
  37. Qin, B.-L., Zhang, Q., Barbosa-Canovas, G. V., Swanson, B. G., & Pedrow, P. D. (1994). Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 1(6), 1047–1057.CrossRefGoogle Scholar
  38. Qin, B. L., Pothakamury, U. R., Barbosa-Cánovas, G. V., & Swanson, B. G. (1996). Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Critical Reviews in Food Science and Nutrition, 36(6), 603–627.CrossRefGoogle Scholar
  39. Qin, B.-L., Barbosa-Canovas, G. V., Swanson, B. G., Pedrow, P. D., & Olsen, R. G. (1998). Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications, 34(1), 43–50.CrossRefGoogle Scholar
  40. Riederer, M., & Schönherr, J. (1988). Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leaves. Planta, 174(1), 127–138.CrossRefGoogle Scholar
  41. Rols, M.-P., & Teissié, J. (1998). Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophysical Journal, 75(3), 1415–1423.CrossRefGoogle Scholar
  42. Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., & Farish, O. (2000). Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Letters in Applied Microbiology, 31(2), 110–114.CrossRefGoogle Scholar
  43. Satkauskas, S., & Saulis, G. (2004). Electroporation as a tool for biotechnology and medicine with specific emphasize on its application for drug and gene delivery. Review. Veterinarija ir Zootechnika, 26(48), 74.Google Scholar
  44. Saulis, G. (2010). Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Engineering Reviews, 2(2), 52–73.CrossRefGoogle Scholar
  45. Schultheiss, C., Bluhm, H., Mayer, H.-G., Kern, M., Michelberger, T., & Witte, G. (2002). Processing of sugar beets with pulsed-electric fields. IEEE Transactions on Plasma Science, 30(4), 1547–1551.CrossRefGoogle Scholar
  46. Tekle, E., Astumian, R. D., & Chock, P. B. (1991). Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proceedings of the National Academy of Sciences, 88(10), 4230–4234.CrossRefGoogle Scholar
  47. Vorobiev, E., & Lebovka, N. (2009). Pulsed-electric-fields-induced effects in plant tissues: fundamental aspects and perspectives of applications. Electrotechnologies for extraction from food plants and biomaterials (pp. 39–81). New York: Springer. Food Engineering Series.Google Scholar
  48. Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N., & Bazhal, M. (2005). Pulsed electric field-assisted extraction of juice from food plants. In G. V. Barbosa-Cánovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies (pp. 105–130). New York: CRC.Google Scholar
  49. Weaver, J. C. (2000). Electroporation of cells and tissues. IEEE Transactions on Plasma Science, 28(1), 24–33.CrossRefGoogle Scholar
  50. Wouters, P. C., & Smelt, J. P. P. M. (1997). Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnology, 11(3), 193–229.CrossRefGoogle Scholar
  51. Zimmermann, U., & Vienken, J. (1982). Electric field-induced cell-to-cell fusion. The Journal of Membrane Biology, 67(3), 165–182.CrossRefGoogle Scholar
  52. Zimmermann, U., Pilwat, G., & Riemann, F. (1974). Dielectric breakdown of cell membranes. Biophysical Journal, 14(11), 881–899.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katarzyna Dymek
    • 1
    Email author
  • Petr Dejmek
    • 1
  • Federico Gómez Galindo
    • 1
  1. 1.Food Technology, Engineering, and NutritionLund UniversityLundSweden

Personalised recommendations