Skip to main content

Effect of Gaseous Ozone on Papaya Anthracnose

Abstract

Anthracnose caused by the fungus Colletotrichum gloeosporioides is considered as one of the most devastating postharvest disease of papaya. The aim of this study was to evaluate the effectiveness of gaseous ozone as a potential antifungal preservation technique to overcome anthracnose disease of papaya during cold storage. Different concentrations of ozone (0 (control), 0.04, 1.6, and 4 ppm) were applied for various exposure durations (48, 96, and 144 h). Radial mycelia growth and conidial germination were evaluated in vitro after fungal exposure to the different levels and durations of ozone. Significant inhibition in radial mycelia growth of C. gloeosporioides was observed (p < 0.05) in all ozone treatments as compared to the control during 8 days of incubation at room temperature (25 ± 3 °C). Ozone treatment of papaya fruit with 1.6-ppm ozone for 96 h delayed and simultaneously decreased the disease incidence to 40 % whereas disease severity was rated at 1.7, following 28 days of storage at 12 ± 1 °C and 80 % relative humidity. The scanning electron microscopy showed that 4-ppm ozone caused disintegration of spore structure and did not affect the cuticular surface of fruit. Thus, ozone fumigation can reduce postharvest losses of papaya caused by anthracnose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abeles, F. B., Morgan, P. W., & Salveit, M. E. (1992). Ethylene in plant biology (2nd ed., p. 414). London: Academic.

    Google Scholar 

  2. Aguayo, E., Escalona, V. H., & Artes, F. (2006). Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biology and Technology, 39, 169–177.

    Article  CAS  Google Scholar 

  3. Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2010). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124, 620–626.

    Article  Google Scholar 

  4. Alvarez, A. M., & Nishijima, W. T. (1987). Postharvest diseases of papaya. Plant Disease, 71, 681–686.

    Article  Google Scholar 

  5. Baranovskaya, V. A., Zapolskii, O. B., Ovrutskaya, L. Y., Obodovskaya, N. N., Pschenichnaya, E. E., & Yushkevich, O. I. (1979). Use of ozone gas sterilization during storage of potatoes and vegetables. Koshervnaya I Ovoshchesushhil’naya Prom, 4, 10–12.

    Google Scholar 

  6. Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi (p. 24). USA: Burgess Publishing Co.

    Google Scholar 

  7. Barth, M. M., Zhou, C., Mercier, J., & Payne, F. A. (1995). Ozone storage effects on anthocyanin content and fungal growth in blackberries. Journal of Food Science, 60, 1286–1288.

    Article  CAS  Google Scholar 

  8. Bataller, M., González, J. E., Veliz, E., & Fernández, L. A. (2012). Ozone applications in the post-harvest of papaya (Carica papaya L.): an alternative to Amistar fungicide. Ozone: Science & Engineering: The Journal of the International Ozone Association, 34(3), 151–155.

    Article  CAS  Google Scholar 

  9. Broadwater, W. T., Hoen, R. C., & King, P. H. (1973). Sensitivity of three selected bacterial species to ozone. Applied Microbiology, 26, 391–393.

    CAS  Google Scholar 

  10. Cia, P., Pascholati, S. F., Benato, E. A., Camili, E. C., & Santos, C. A. (2007). Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biology and Technology, 43, 366–373.

    Article  CAS  Google Scholar 

  11. Couey, H. M., & Farias, G. (1979). Control of postharvest decay of papaya. HortScience, 14, 719–721.

    CAS  Google Scholar 

  12. Couey, H. M., Alvarez, A. M., & Nelson, M. G. (1984). Comparison of hot water spray and immersion treatment for control of postharvest decay of papaya. Plant Disease, 68, 436–437.

    Google Scholar 

  13. Cronin, M. J., Yohalem, D. S., Harris, R. F., & Andrews, J. H. (1996). Putative mechanism and dynamics of inhibition of apple scab pathogen Venturia inequalis by compost extracts. Soil Biology and Biochemistry, 28, 1241–1249.

    Article  CAS  Google Scholar 

  14. Currier, R., Toracco, D., & Cross, J. (2001). Deactivation of clumped and dirty spores of Bacillus globigii. Ozone Science and Engineering, 23, 285–294.

    Article  CAS  Google Scholar 

  15. Ewell, A. W. (1940). Ozone and its applications in food preservation. Refrigeration application data book. In Sect. II. ‘Cold storage practice’ (2nd ed., pp. 199–203). Menasha: American Society of Refrigeration Engineering.

    Google Scholar 

  16. Forney, C. F. (2003). Postharvest response of horticultural products to ozone. In D. M. Hodges (Ed.), Postharvest oxidative stress in horticultural crops (pp. 13–54). New York: Food Products Press.

    Google Scholar 

  17. Forney, C. F., Song, J., Hildebrand, P. D., Fan, L., & McRae, K. B. (2007). Interactive effects of ozone and 1-methylcyclopropene on decay resistance and quality of stored carrots. Postharvest Biology and Technology, 45, 341–348.

    Article  CAS  Google Scholar 

  18. Graham, D. M., Pariza, M., Glaze, W. H., Newell, G. W., Erdman, J. W., & Borzelleca, J. F. (1997). Use of ozone for food processing. Food Technology, 51, 72–75.

    Google Scholar 

  19. Karaca, H., & Velioglu, S. Y. (2007). Ozone applications in fruit and vegetable processing. Food Review International, 23, 91–106.

    Article  CAS  Google Scholar 

  20. Kechinski, C. P., Cândida, R. S. M., Pâmela, V. R. G., Caciano, P. Z. N., Lígia, D. F. M., Isabel, C. T., et al. (2011). Effects of ozonized water and heat treatment on the papaya fruit epidermis. Food and Bioproduct Process. doi:10.1016/j.fbp.2011.01.005.

  21. Khadre, M. A., & Yousef, A. E. (2001). Sporicidal action of ozone and hydrogen peroxide: a comparative study. International Journal of Food Microbiology, 71, 131–138.

    Article  CAS  Google Scholar 

  22. Kim, J. G., & Yousef, A. E. (2000). Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. Journal of Food Science, 65, 521–528.

    Article  CAS  Google Scholar 

  23. Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of Food Protection, 62(9), 1071–1087.

    CAS  Google Scholar 

  24. Kim, J. G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Advances in Food and Nutrition Research, 45, 167–218.

    Article  CAS  Google Scholar 

  25. Kiran, B., Lalitha, V., & Raveesha, K. A. (2010). Screening of seven medicinal plants for antifungal activity against seed borne fungi of maize seeds. African Journal of Basic & Applied Sciences, 2(3–4), 99–103.

    Google Scholar 

  26. Komanapalli, I. R., & Lau, B. H. S. (1996). Ozone-induced damage of Escherichia coli K-12. Applied Microbiology and Biotechnology, 46, 610–614.

    Article  CAS  Google Scholar 

  27. Krause, C. R., & Weidensaul, T. C. (1978). Effects of ozone on the sporulation, germination and pathogenicity of Botrytis cinerea. Phytopathology, 68, 195–198.

    Article  CAS  Google Scholar 

  28. Kuprianoff, J. (1953). The use of ozone in cold storage of fuits. Zeitschrift Kaltetechnik, 10, 1–9.

    Google Scholar 

  29. Lewis, L., Zhuang, H., Payne, F. A., & Barth, M. M. (1996). Beta-carotene content and color assessment in ozone-treated broccoli florets during modified atmosphere packaging. Institute of Food Technologists annual meeting, book of abstracts (pp. 99).

  30. Liew, C. L., & Prange, R. K. (1994). Effect of ozone and storage temperature on post-harvest diseases and physiology of carrots (Daucus carota L.). Journal of the American Society for Horticultural Science, 119, 563–567.

    CAS  Google Scholar 

  31. Mahfoudh, A., Barbeau, J., Moisan, M., Leduc, A., & Seguin, J. (2010). Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Applied Surface Science, 256, 3063–3072.

    Article  CAS  Google Scholar 

  32. Mahfoudh, A., Moisan, M., Seguin, J., Barbeau, J., Kabouzi, Y., & Keroack, D. (2010). Inactivation of vegetative and sporulated bacteria by dry gaseous ozone. Ozone Science and Engineering, 32(3), 180–198.

    Article  CAS  Google Scholar 

  33. Ozkan, R., Smilanick, J. L., & Karabulut, O. A. (2011). Toxicity of ozone gas to conidia of Penicillium digitatum, Penicillium italicum and Botyris cinerea and control of gray mold on table grapes. Postharvest Biology and Technology, 60, 47–51.

    Article  CAS  Google Scholar 

  34. Palou, L., Crisosto, C. H., Smilanick, J. L., Adaskaveg, J. E., & Zoffoli, J. P. (2002). Effects of continous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biology and Technology, 24, 39–48.

    Article  CAS  Google Scholar 

  35. Perez, A. G., Sanz, C., Rios, J. J., Olias, R., & Olias, J. M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agricultural and Food Chemistry, 47, 1652–1656.

    Article  CAS  Google Scholar 

  36. Ranasinghe, L., Jayawardena, B., & Abeywickrama, K. (2005). An integrated strategy to control postharvest decay of Embul banana by combining essential oils with modified atmosphere packaging. International Journal of Food Science and Technology, 40, 97–103.

    Article  CAS  Google Scholar 

  37. Sapers, G. M. (1998). New technologies for safer produce-chemical based treatments and decontamination by washing. In Proceedings Conference on Fresh Fruit and Vegetables: Food Safety Challenges. Chicago: National Centre for Food Safety Technology. May 12–14.

    Google Scholar 

  38. Sarig, P., Zahavi, T., Zutkhi, Y., Yannai, S., Lisker, N., & Ben-Arie, R. (1996). Ozone for control of postharvest decay of table grapes caused by Rhizopus stolonifer. Physiological and Molecular Plant Pathology, 48, 403–415.

    Article  CAS  Google Scholar 

  39. Sepiah, M. (1993). Efficacy of propiconazole against fungi causing postharvest diseases on Eksotica papaya. In: Proceedings of the International Postharvest Conference on Handling Tropical Fruits, (pp. 53). Chiangmai, Thailand.

  40. Shiota, H. (1991). Volatile components of pawpaw fruit (Asimia triloba). Journal of Agricultural and Food Chemistry, 39, 1631–1635.

    Article  CAS  Google Scholar 

  41. Sivakumar, D., Hewarathgamagae, N. K., Wijeratnam, R. S. W., & Wijesundera, R. L. C. (2002). Effect of ammonium carbonate and sodium bicarbonate on anthracnose of papaya. Phytoparasitica, 30, 1–7.

    Google Scholar 

  42. Skog, L. J., & Chu, C. L. (2001). Effect of ozone on qualities of fruits and vegetables in cold storage. Canadian Journal of Plant Science, 81, 773–778.

    Article  CAS  Google Scholar 

  43. Smilanick, J. L. (2003). Postharvest use of ozone on citrus fruit (pp. 1–6). USA: Packinghouse Newsletter 199.

    Google Scholar 

  44. Swadeshi, K., Miura, K., Ohtsuka, E., Ueda, T., Shinriki, N., & Ishizaki, K. (1986). Structure and sequence-specificity of ozone degradation of supercoiled plasmid DNA. Nucleic Acids Research, 14, 1159–1169.

    Article  Google Scholar 

  45. Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R., & Srisukonth, C. (2002). Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. The Journal of General and Applied Microbiology, 48, 193–199.

    Article  CAS  Google Scholar 

  46. Tzortzakis, N. G., Singleton, I., & Barnes, J. D. (2007). Deployment of low level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biology and Technology, 43, 261–270.

    Article  CAS  Google Scholar 

  47. Tzortzakis, N. G., Singleton, I., & Barnes, J. D. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47, 1–9.

    Article  CAS  Google Scholar 

  48. United States Food and Drug Administration (US-FDA). (1997). Substances generally recognized as safe, proposed rule. Federal Register, 62, 18937–18964.

    Google Scholar 

  49. Young, S. B., & Setlow, P. (2004). Mechanism of Bacillus subtilis spore resistance to and killing by aqueous ozone. Journal of Applied Microbiology, 96, 1133–1142. B.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank MedKlinn International Sdn. Bhd. for providing financial and technical support for this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asgar Ali.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ong, M.K., Kazi, F.K., Forney, C.F. et al. Effect of Gaseous Ozone on Papaya Anthracnose. Food Bioprocess Technol 6, 2996–3005 (2013). https://doi.org/10.1007/s11947-012-1013-4

Download citation

Keywords

  • Anthracnose
  • Ozone
  • Papaya
  • Mycelia growth
  • Conidia germination
  • Disease incidence