Skip to main content
Log in

Novel Application of Neutron Radiography to Forced Convective Drying of Fruit Tissue

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Neutron imaging is a promising technique to study drying processes in food engineering as it is a non-intrusive, non-destructive technique, which provides quasi-real-time quantitative information of the water loss during drying and of the internal water distribution, at a high spatial and dynamic resolution. Particularly, the high sensitivity to water is its main advantage for drying studies, despite the limited accessibility to reactor facilities, which produce neutrons. This technique was used to investigate forced convective drying of fruit tissue (pear and apple), placed in a small wind tunnel. Water loss, water distribution in the sample and sample shrinkage were evaluated as a function of time. The water loss, determined quantitatively from neutron radiographs, was underestimated slightly compared to gravimetrical measurements. The overall drying behaviour agreed well with control measurements performed in a climatic chamber and was very similar for both fruit tissues. The corresponding shrinkage behaviour of both tissues was also similar. The large shrinkage, which is characteristic for soft biological materials such as food products, however, hindered post-processing to some extent. From the internal water distribution, the water gradients within the sample, induced by drying, were visualised and were found to predominantly occur at the air–material interface, indicating that the water transport inside the tissue dominated the water loss, instead of the convective exchange with the air flow. Neutron imaging was shown to exhibit unique benefits for studying drying processes of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.

    Google Scholar 

  • Anderson, I. S., McGreevy, R., & Bilheux, H. Z. (Eds.). (2009). Neutron imaging and applications—a reference for the imaging community. New York: Springer.

    Google Scholar 

  • Aregawi, W.A., Defraeye, T., Verboven, P., Herremans, E., De Roeck, G. & Nicolai, B. (2012). Modelling of coupled water transport and large deformation during dehydration of apple tissue. Food and Bioprocess Technology. doi:10.1007/s11947-012-0862-1.

  • Balasko, M., Koröusi, F., & Farkas, I. (2002). Applying dynamic neutron radiography in in-situ monitoring of the drying processes of apple. Developments in Chemical Engineering and Mineral Processing, 10(3–4), 247–260.

    Google Scholar 

  • De Bonis, M. V., & Ruocco, G. (2008). A generalized conjugate model for forced convection drying based on an evaporative kinetics. Journal of Food Engineering, 89(2), 232–240.

    Article  Google Scholar 

  • Dean, R. B. (1978). Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Transactions of the ASME: Journal of Fluids Engineering, 100, 215–223.

    Article  Google Scholar 

  • Defraeye, T. (2011). Convective heat and mass transfer at exterior building surfaces. PhD thesis. Department of Civil Engineering, KU Leuven, Belgium.

  • Defraeye, T., Blocken, B., & Carmeliet, J. (2012). Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling. International Journal of Heat and Mass Transfer, 55(1–3), 112–124.

    Google Scholar 

  • Defraeye, T., Blocken, B., Derome, D., Nicolai, B., & Carmeliet, J. (2012). Convective heat and mass transfer modelling at air–porous material interfaces: overview of existing methods and relevance. Chemical Engineering Science, 74, 49–58.

    Article  CAS  Google Scholar 

  • Esser, H. G., Carminati, A., Vontobel, P., Lehmann, E. H., & Oswald, S. E. (2010). Neutron radiography and tomography of water distribution in the root zone. Journal of Plant Nutrition and Soil Science, 173(5), 757–764.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185.

    Article  Google Scholar 

  • Hassanein, R. (2006) Correction methods for the quantitative evaluation of thermal neutron tomography. PhD thesis, ETH Zurich, Switzerland.

  • Hassanein, R., Lehmann, E., & Vontobel, P. (2005). Methods of scattering corrections for quantitative neutron radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1–3), 353–360.

    Article  CAS  Google Scholar 

  • Hills, B. P., & Remigereau, B. (1997). NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing. International Journal of Food Science and Technology, 32(1), 51–61.

    Article  CAS  Google Scholar 

  • Kaya, A., Aydin, O., & Dincer, I. (2006). Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. International Journal of Heat and Mass Transfer, 49(17–18), 3094–3103.

    Article  Google Scholar 

  • Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2009). Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numerical Heat Transfer, Part A: Applications, 56(5), 379–405.

    Article  CAS  Google Scholar 

  • Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2010). Finite-volume modelling of heat and mass transfer during convective drying of porous bodies—non-conjugate and conjugate formulations involving the aerodynamic effects. Renewable Energy, 35(7), 1391–1402.

    Article  Google Scholar 

  • Lehmann, E., Vontobel, P., & Wiezel, L. (2001). Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestructive Testing and Evaluation, 16, 191–202.

    Article  Google Scholar 

  • Leonard, A., Blacher, S., Marchot, P., Pirard, J. P., & Crine, M. (2004). Measurement of shrinkage and cracks associated to convective drying of soft materials by X-ray microtomography. Drying Technology, 22(7), 1695–1708.

    Article  Google Scholar 

  • Leonard, A., Blacher, S., Marchot, P., Pirard, J. P., & Crine, M. (2005). Moisture profiles determination during convective drying using X-ray microtomography. Canadian Journal of Chemical Engineering, 83, 127–131.

    Article  CAS  Google Scholar 

  • Leonard, A., Blacher, S., Nimmol, C., & Devahastin, S. (2008). Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. Journal of Food Engineering, 85(1), 154–162.

    Article  Google Scholar 

  • Marquez, C. A., & De Michelis, A. (2011). Comparison of drying kinetics for small fruits with and without particle shrinkage considerations. Food and Bioprocess Technology, 4(7), 1212–1218.

    Article  Google Scholar 

  • Matsushima, U., Kawabata, Y., & Horie, T. (2005). Estimation of the volumetric water content in chrysanthemum tissues. Journal of Radioanalytical and Nuclear Chemistry, 264(2), 325–328.

    Article  Google Scholar 

  • Matsushima, U., Kawabata, Y., Hino, M., Geltenbort, P., & Nicolaï, B. M. (2005). Measurement of changes in water thickness in plant materials using very low-energy neutron radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1–3), 76–80.

    Article  CAS  Google Scholar 

  • Matsushima, U., Herppich, W. B., Kardjilov, N., Graf, W., Hilger, A., & Manke, I. (2009). Estimation of water flow velocity in small plants using cold neutron imaging with D2O tracer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605(1–2), 146–149.

    Article  CAS  Google Scholar 

  • McCarthy, M. J., Perez, E., & Ozilgen, M. (1991). Model for transient moisture profiles of a drying apple slab using the data obtained with magnetic resonance imaging. Biotechnology Progress, 7(6), 540–543.

    Article  CAS  Google Scholar 

  • Menon, M., Robinson, B., Oswald, S. E., Kaestner, A., Abbaspour, K. C., Lehmann, E., et al. (2007). Visualization of root growth in heterogeneously contaminated soil using neutron radiography. European Journal of Soil Science, 58(3), 802–810.

    Article  Google Scholar 

  • Misra, S., Ramesh, K. T., & Okamura, A. M. (2008). Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence (Camb), 17(5), 463. 41p.

    Article  Google Scholar 

  • Mujumdar, A. S. (Ed.). (2006). Handbook of industrial drying. Boca Raton: Taylor & Francis.

    Google Scholar 

  • Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852.

    Article  Google Scholar 

  • Nakanishi, T. M., & Matsubayashi, M. (1997a). Nondestructive water imaging by neutron beam analysis in living plants. Journal of Plant Physiology, 151(4), 442–445.

    Article  CAS  Google Scholar 

  • Nakanishi, T. M., & Matsubayashi, M. (1997b). Water imaging of seeds by neutron beam. Bioimages, 5, 45–48.

    Google Scholar 

  • Nakanishi, T. M., Furukawa, J., & Matsubayashi, M. (1999). A preliminary study of CT imaging of water in a carnation flower. Nuclear Instruments and Methods in Physics Research A, 424, 136–141.

    Article  CAS  Google Scholar 

  • Nguyen, T. A., Dresselaers, T., Verboven, P., D’hallewin, G., Culeddu, N., Van Hecke, P., et al. (2006). Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. Journal of the Science of Food and Agriculture, 86(5), 745–756.

    Article  CAS  Google Scholar 

  • Nguyen, T. A., Verboven, P., Scheerlinck, N., Vandewalle, S., & Nicolai, B. M. (2006). Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. Journal of Food Engineering, 72(1), 63–72.

    Article  Google Scholar 

  • Nguyen, T. A., Verboven, P., Schenk, A., & Nicolaï, B. (2007). Prediction of water loss from pears (Pyrus communis cv.Conference) during controlled atmosphere storage as affected by relative humidity. Journal of Food Engineering, 83(2), 149–155.

    Article  CAS  Google Scholar 

  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49(4), 311–319.

    Article  Google Scholar 

  • Sedighi-Gilani, M., Griffa, M., Mannes, D., Lehmann, E., Carmeliet, J. & Derome, D. (2012). Visualization and quantification of liquid water transport in softwood by means of neutron radiography. International Journal Heat and Mass Transport, 55, 6211–6221.

    Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Scheerlinck, N., Hoang, M. L., & Nicolai, B. (2003). Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple. Journal of Food Engineering, 58(3), 285–294.

    Article  Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolaï, B. (2003a). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp mitis (Wallr.)) during storage. Part 1: model development and determination of diffusion coefficients. Postharvest Biology and Technology, 30(1), 75–88.

    Article  Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolaï, B. (2003b). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp mitis (Wallr.)) during storage Part 2. Model simulations and practical applications. Postharvest Biology and Technology, 30(1), 89–97.

    Article  Google Scholar 

  • Verboven, P., Kerckhofs, G., Mebatsion, H. K., Ho, Q. T., Temst, K., Wevers, M., et al. (2008). Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiology, 147(2), 518–527.

    Article  CAS  Google Scholar 

  • Verstreken, E., Van Hecke, P., Scheerlinck, N., De Baerdemaeker, J., & Nicolaï, B. (1998). Parameter estimation for moisture transport in apples with the aid of NMR imaging. Magnetic Resonance in Chemistry, 36(3), 196–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thijs Defraeye is a postdoctoral fellow of the Research Foundation-Flanders (FWO) and acknowledges its support. The experiments were carried out at the NEUTRA beamline of the Paul Scherrer Institute, Villigen, Switzerland. We would like to acknowledge the contributions and support of the Paul Scherrer Institute NEUTRA support team. Financial support by the Research Foundation—Flanders (project FWO G.0603.08) and KU Leuven (project OT 08/023) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs Defraeye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Defraeye, T., Aregawi, W., Saneinejad, S. et al. Novel Application of Neutron Radiography to Forced Convective Drying of Fruit Tissue. Food Bioprocess Technol 6, 3353–3367 (2013). https://doi.org/10.1007/s11947-012-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0999-y

Keywords

Navigation