Skip to main content
Log in

Cellular Automata Modeling of Hesperetin Release Phenomenon from Lipid Nanocarriers

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Release behavior of encapsulated food bioactives is an important issue which has not been befittingly studied. Cellular automaton is a mathematical model that shows complex systems can be simulated based on interactions of their constructing components. In this research, cellular automata were proposed for simulating encapsulant release through lipid nanocarriers via diffusion mechanism in order to know effects of different parameters, e.g., encapsulant load, kind of neighborhood, probability of encapsulant solubility, encapsulant distribution, and type of release medium in two and three dimensions. The simulation results were validated using experimental hesperetin release data which showed good agreement indicating the ability of cellular automata to enhance the resolution over the complexity of the diffusion phenomenon during encapsulant release from nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arifin, D. Y., Lee, L. Y., & Wang, C.-H. (2006). Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Advanced Drug Delivery Reviews, 58(12–13), 1274–1325.

    Article  CAS  Google Scholar 

  • Bandman, O. (1999). Comparative study of cellular-automata diffusion models. In V. Malyshkin (Ed.), Parallel computing technologies (Vol. 1662, 756–756). Berlin: Springer.

    Chapter  Google Scholar 

  • Barat, A., Ruskin, H. J., & Crane, M. (2006). Probabilistic methods for drug dissolution. Part 2. Modelling a soluble binary drug delivery system dissolving in vitro. Simulation Modelling Practice and Theory, 14, 857–873.

    Article  Google Scholar 

  • Bertrand, N., Leclair, G., & Hildgen, P. (2007). Modeling drug release from bioerodible microspheres using a cellular automaton. International Journal of Pharmaceutics, 343(1–2), 196–207.

    Article  CAS  Google Scholar 

  • Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012a). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27.

    Article  CAS  Google Scholar 

  • Fathi, M., Varshosaz, J., Mohebbi, M., & Shahidi, F. (2012b). Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food and Bioprocess Technology. doi:10.1007/s11947-012-0845-2.

  • Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35.

    Article  CAS  Google Scholar 

  • Hoekstra, A. G., Kroc, J., & Sloot, P. M. A. (2010). Introduction to modeling of complex systems using cellular automata. In A. G. Hoekstra, J. Kroc, & P. M. A. Sloot (Eds.), Simulation based understanding of complex systems with cellular automata. Heidelberg: Springer.

    Google Scholar 

  • Ilachinski, A. (2001). Cellular automata: a discrete universe. Singapore: World Scientific.

    Google Scholar 

  • Ivanov, S., Troyankin, A., Gurikov, P., Kolnoochenko, A., Menshutina, N., Pistikopoulos, E. N., Georgiadis, M. C., & Kokossis, A. C. (2011). 3D cellular automata for modeling of spray freeze drying process. Computer Aided Chemical Engineering, 29, 136–140.

    Article  CAS  Google Scholar 

  • Klaypradit, W., & Huang, Y.-W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT- Food Science and Technology, 41(6), 1133–1139.

    Article  CAS  Google Scholar 

  • Laaksonen, H., Hirvonen, J., & Laaksonen, T. (2009a). Cellular automata model for swelling-controlled drug release. International Journal of Pharmaceutics, 380(1–2), 25–32.

    Article  CAS  Google Scholar 

  • Laaksonen, T. J., Laaksonen, H. M., Tapio Hirvonen, J., & Murtomaki, L. (2009b). Cellular automata model for drug release from binary matrix and reservoir polymeric devices. Biomaterials, 30(10), 1978–1987.

    Article  Google Scholar 

  • Müller, R. H., Lippacher, A., & Gohla, S., Eds. (2000). Solid lipid nanoparticles (SLN) as a carrier system for the controlled release of drugs. Handbook of pharmaceutical controlled release technology. New York. Basel, CRC Press.

  • Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, S131–S155.

    Google Scholar 

  • Neumann, J. V. (1966). Theory of self-replicating automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Peridier, V. J. (2005). Estimating transient surface heating using a cellular automaton energy-transport model. Complex Systems, 16, 139–153.

    Google Scholar 

  • Siepmann, J., Faisant, N., & Benoit, J.-P. (2002). A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharmaceutical Research, 19(2), 1885–1893.

    Google Scholar 

  • Siepmann, J., & Gopferich, A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Advanced Drug Delivery Reviews, 48, 229–247.

    Article  CAS  Google Scholar 

  • Sriamornsak, P., Nunthanid, J., Cheewatanakornkool, K., & Manchun, S. (2010). Effect of drug loading method on drug content and drug release from calcium pectinate gel beads. AAPS PharmSciTech, 11(3), 1315–1319.

    Article  CAS  Google Scholar 

  • Srirangam, R., & Majumdar, S. (2010). Passive asymmetric transport of hesperetin across isolated rabbit cornea. International Journal of Pharmaceutics, 394, 60–67.

    Article  CAS  Google Scholar 

  • Toffoli, T., & Margolus, N. (1987). Cellular automata machines: a new environment for modeling. New York: MIT Press.

    Google Scholar 

  • Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science & Emerging Technologies, 6(1), 29–35.

    Article  CAS  Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

    Google Scholar 

  • Yang, S., & Washington, C. (2006). Drug release from microparticulate systems. In S. Benita (Ed.), Microencapsulation: methods and industrial applications. New York: Taylor & Francis.

    Google Scholar 

  • Zhang, M., Yang, Z., Chow, L., & Wang, C. (2003). Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. Journal of Pharmaceutical Sciences, 92, 2040–2056.

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Iran National Science Foundation (INSF) for financial support under grant number of 89004288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, M., Mohebbi, M., Varshosaz, J. et al. Cellular Automata Modeling of Hesperetin Release Phenomenon from Lipid Nanocarriers. Food Bioprocess Technol 6, 3134–3142 (2013). https://doi.org/10.1007/s11947-012-0995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0995-2

Keywords

Navigation