Skip to main content

Matching Changes in Sensory Evaluation with Physical and Chemical Parameters

A Case Study: Argentinean Pistachio Nuts (Pistachia vera L. cv Kerman)

Abstract

Changes in pistachio nuts induced by roasting and salting processes, evaluated by both sensory and instrumental analyses are reported, looking for a match in both methods. Dried (DP), roasted (RP), and salted–roasted pistachios (SRP) were studied, including four groups of sensory attributes, six basic chemical parameters, complemented by volatile organic compounds (VOCs) and breaking force. Multivariate statistics helped with data interpretation, enabling correlations between two groups of variables. Key results show that the perception of roasting is associated with increased amounts of α-pinene and 3-carene in RP and SRP, while DP are associated with higher amounts of limonene, moisture, and bitterness. Sensory and puncture test measurements (texturometer) showed opposite results, which could be explained considering the loss of plasticity in RP and SRP. Current results present a novel approach for the evaluation of changes in the perception of pistachio quality by consumers, supported by both sensory and instrumental analyses using multivariate statistics for data evaluation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  2. Aceña, L., Vera, L., Guasch, J., Busto, O., & Mestres, M. (2010). Comparative study of two extraction techniques to obtain representative aroma extracts for being analysed by gas chromatography–olfactometry: application to roasted pistachio aroma. Journal of Chromatography. A, 1217, 7781–7787.

    Article  Google Scholar 

  3. Aceña, L., Vera, L., Guasch, J., Busto, O., & Mestres, M. (2011). Determination of roasted pistachio (Pistacia vera L.) key odorants by headspace solid-phase microextraction and gas chromatography–olfactometry. Journal of Agricultural and Food Chemistry, 59, 2518–2523.

    Article  Google Scholar 

  4. Alma, M. H., Nitz, S., Kollmannsberger, H., Digrak, M., Efe, F. T., & Yilmaz, N. (2004). Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). Journal of Agricultural and Food Chemistry, 52, 3911–3914.

    Article  CAS  Google Scholar 

  5. Alsavar, C., Shahidi, F., & Cadwallader, K. R. (2003). Comparison of natural and roasted Turkish tombul hazelnut (Corylus avellana l.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. Journal of Agricultural and Food Chemistry, 51, 5067–5072.

    Article  Google Scholar 

  6. Amoo, I. A., Atasie, V. N., & Akinola, O. D. (2012). Proximate composition and physicochemical and functional properties of Pistacia vera (L.). Journal of Food, Agriculture and Environment, 10, 20–24.

    CAS  Google Scholar 

  7. Anzaldua-Morales, A. (1994). La evaluación sensorial de los alimentos en la teoría y en la práctica (1st ed.). Zaragoza: Acribia S. A. Ed. Publisher.

    Google Scholar 

  8. AOCS. (2009). Official methods and recommended practices of the American Oil Chemists Society (5th ed.). Champaign: AOCS Press.

    Google Scholar 

  9. Baroni, M. V., Nores, M. L., Díaz, M. D. P., Chiabrand, G. A., Fassano, J. P., Costa, C., & Wunderlin, D. A. (2006). Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction–gas chromatography–mass spectrometry coupled to chemometrics. Journal of Agricultural and Food Chemistry, 54, 7235–7241.

    Article  CAS  Google Scholar 

  10. Baroni, M. V., Arrúa, R. C., Nores, M. L., Faye, P. F., Díaz, M. P., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): evaluation of north–south provenance by chemometrics. Food Chemistry, 114, 727–733.

    Article  CAS  Google Scholar 

  11. Baroni, M. V., Podio, N. S., Badini, R. G., Inga, C. M., Ostera, H. A., Cagnoni, M., Gallegos, E., Gautier, E., Peral-García, P., Hoogewerff, J., & Wunderlin, D. A. (2011). How much do soil and irrigation water contribute to the composition of meat? A case study: meat from three areas of Argentina. Journal of Agricultural and Food Chemistry, 59, 11117–11128.

    Article  CAS  Google Scholar 

  12. Chen, C. Y., Lapsley, K., & Blumberg, J. (2006). A nutrition and health perspective on almonds. Journal of the Science of Food and Agriculture, 86, 2245–2250.

    Article  CAS  Google Scholar 

  13. Crane, J. C. (1978). Quality of pistachio nuts as affected by time of harvest. Journal of the American Society for Horticultural Science, 103, 332–333.

    Google Scholar 

  14. Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Cagnoni, M., Gallego, E., Peral-García, P., Hoogewerff, J., & Wunderlin, D. A. (2011). Fingerprints for main varieties of Argentinean wines: terroir differentiation by inorganic, organic and stable isotopic analyses coupled to Chemometrics. Journal of Agricultural and Food Chemistry, 59, 7854–7865.

    Article  Google Scholar 

  15. Dreher, M. L. (2012). Pistachio nuts: Composition and potential health benefits. Nutrition Reviews, 70, 234–240.

    Article  Google Scholar 

  16. Emadzadeh, B., Razavi, S. M. A., & Mahallati, M. N. (2012). Effects of fat replacers and sweeteners on the time-dependent rheological characteristics and emulsion stability of low-calorie pistachio butter: a response surface methodology. Food and Bioprocess Technology, 5(5), 1581–1591.

    Article  CAS  Google Scholar 

  17. Fennema, O. (1985). Chemical changes in food during processing. An overview. In T. Richardson & J. W. Fineley (Eds.), Chemical changes in food during processing (1st ed., pp. 1–16). Westport: AVI.

    Chapter  Google Scholar 

  18. Flamini, G., Bader, A., Cioni, P. L., Katbeh-Bader, A., & Morelli, I. (2004). Composition of the essential oil of leaves, galls, and ripe and unripe fruits of Jordanian Pistacia palaestina Boiss. Journal of Agricultural and Food Chemistry, 52, 572–576.

    Article  CAS  Google Scholar 

  19. Gentile, C., Tesoriere, L., Butera, D., Fazzari, M., Monastero, M., Allegra, M., & Livrea, M. A. (2007). Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. Journal of Agricultural and Food Chemistry, 55, 643–648.

    Article  CAS  Google Scholar 

  20. Gogus, F., Ozel, M. Z., Kocak, D., Hamilton, J. F., & Lewis, A. C. (2011). Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption–GC × GC–TOF/MS. Food Chemistry, 129, 1258–1264.

    Article  CAS  Google Scholar 

  21. Jha, S. N., Jaiswal, P., Narsaiah, K., Singh, A. K., Kaur, P. P., Sharma, R., Kumar, R., & Bhardwaj, R. (2011). Prediction of sensory profile of mango using textural attributes during ripening. Food and Bioprocess Technology. doi:10.1007/s11947-011-0720-6.

  22. Kader, A. A., Heintz, C. M., Labavitch, J. M., & Rae, H. L. (1982). Studies related to the description and evaluation of pistachio nut quality. Journal of the American Society for Horticultural Science, 107(5), 812–816.

    CAS  Google Scholar 

  23. Kashani-Nejad, M., Tabil, L. G., Mortazavi, A. S., & Kordi, A. S. (2003). Effect of drying methods on quality of pistachio nuts. Drying Technology, 21, 821–838.

    Article  Google Scholar 

  24. Luh, B. S., Wong, V. S., & El-shimi, N. E. (1981). Effect of processing on some chemical constituents of pistachio nuts. Journal of Food Quality, 5, 33–41.

    Article  Google Scholar 

  25. Martínez, M., Barrionuevo, G., Nepote, V., Grosso, N., & Maestri, D. (2011). Sensory characterisation and oxidative stability of walnut oil. International Journal of Food Science and Technology, 46, 1276–1281.

    Article  Google Scholar 

  26. Meilgaard, M., Civille, G. V., & Carr, B. T. (1991). Sensory evaluation techniques (2nd ed.). Florida: CRC.

    Google Scholar 

  27. Mikkelsen, B. B., & Poll, L. (2002). Decomposition and transformation of aroma compounds and anthocyaninis during black currant (Ribes nigrum L.) juice processing. Journal of Food Science, 67(9), 459–463.

    Article  Google Scholar 

  28. Muñoz, A. M., Civille, G. V., & Carr, B. T. (1992). Sensory evaluation in quality control (pp. 1–235). New York: Van Nostrand Reinhold.

    Chapter  Google Scholar 

  29. Nepote, V., Olmedo, R. O., Mestrallet, M. G., & Grosso, N. R. (2009). A study of the relationships among consumer acceptance, oxidation chemical indicators, and sensory attributes in high oleic and normal peanuts. Journal of Food Science, 74, S1–S8.

    Article  CAS  Google Scholar 

  30. Nikzadeh, V., & Sedaghat, N. (2008). Physical and sensory changes in pistachio nuts as affected by roasting temperature and storage. American-Eurasian Journal of Agricultural & Environmental Science, 2008(4), 478–483.

    Google Scholar 

  31. Orhan, I. E., Senol, S., Gulpinar, A. R., Sekeroglu, N., Kartal, M., & Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food Chemistry, 130, 882–888.

    Article  CAS  Google Scholar 

  32. Parfitt, D., Kallsen, C., & Maranto, J. (2005). The orchard: Pistachio cultivars. In L. Ferguson (Ed.), Pistachio production manual (4th ed., pp. 62–66). Davis: Fruit and Nut Research and Information Center, Regents of the University of California.

    Google Scholar 

  33. Pisté—Pistacho Argentino. Avaible at: http://www.piste.com.ar/. Accessed 12 June 2012.

  34. Plemmons, L. E., & Resurreccion, A. V. (1998). A warm-up sample improves reliability of responses in descriptive analysis. Journal of Sensory Studies, 13, 359–376.

    Article  Google Scholar 

  35. Raei, M., Mortazavi, A., & Pourazarang, H. (2009). Effects of packaging materials, modified atmospheric conditions and storage temperature on physicochemical properties of roasted pistachio nut. Food Analytical Methods, 3, 129–132.

    Article  Google Scholar 

  36. Seferoglu, S., Seferoglu, H. G., Tekintas, F. E., & Balta, F. (2006). Biochemical composition influenced by different locations in Uzun pistachio cv (Pistacia vera L.) grown in Turkey. Journal of Food Composition and Analysis, 19, 461–465.

    Article  CAS  Google Scholar 

  37. Shakerardekani, A., Karim, R., Mohd-Ghazali, H., & Chin, N. L. (2011). Effect of roasting conditions on hardness, moisture content and colour of pistachio kernels. International Food Research Journal, 18, 723–729.

    Google Scholar 

  38. Stolle, A., Ondruschka, B., & Findeisen, M. (2008). Mechanistic and kinetic insights into the thermally induced rearrangement of α-pinene. The Journal of Organic Chemistry, 73, 8228–8235.

    Article  CAS  Google Scholar 

  39. Swern, D. (1964). Reaction of fats and fatty acids. In T. H. Applewhite (Ed.), Baileys industrial oil and fat products (1st ed., Vol. 1, p. 55). New York: Wiley.

  40. Tsantili, E., Takidelli, C., Christopoulosa, M. V., Lambrineab, E., Rouskasc, D., & Roussosa, P. A. (2010). Physical, compositional and sensory differences in nuts among pistachio (Pistachia vera L.) varieties. Scientia Horticulturae, 125, 562–568.

    Article  CAS  Google Scholar 

  41. Tsokou, A., Georgopoulou, K., Melliou, E., Magiatis, P., & Tsitsa, E. (2007). Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules, 12, 1233–1239.

    Article  CAS  Google Scholar 

  42. USDA. (U.S. Department of Agriculture, Agricultural Research Service). 2010. USDA National Nutrient Database for Standard Reference, Release 23. Nutrient Data Laboratory. Available at: http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 12.06.2012.

  43. Vincent, J. F. V. (2004). Application of fracture mechanics to the texture of food. Engineering Failure Analysis, 11, 695–704.

    Article  Google Scholar 

  44. Wunderlin, D. A., Díaz, M. P., Amé, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba—Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FONCyT (PICT 2008–0554), Universidad Nacional de Córdoba, and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) for grants, fellows, and salaries.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pablo D. Ribotta or Daniel A. Wunderlin.

Additional information

María C. Penci, Marcela L. Martinez and María P. Fabani had equal participation in this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Penci, M.C., Martinez, M.L., Fabani, M.P. et al. Matching Changes in Sensory Evaluation with Physical and Chemical Parameters. Food Bioprocess Technol 6, 3305–3316 (2013). https://doi.org/10.1007/s11947-012-0993-4

Download citation

Keywords

  • Pistachio nut
  • Sensory analysis
  • Volatile compounds
  • Multivariate statistics