Skip to main content
Log in

Effect of γ-Irradiation on Colour, Functional and Physicochemical Properties of Pearl Millet [Pennisetum glaucum (L) R. Br.] Cultivars

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effect of γ-irradiation dose (0–8 kGy) on seed colour, functional and pasting properties of two selected pearl millet cultivars (SOSAT and ZATIV) was investigated. Colour (L*a*b*) of the non- and γ-irradiated pearl millet cultivars was measured, and the deltachroma (∆C), colour intensity (∆E) and hue angle were calculated. Also, loose and tapped bulk densities, swelling capacity, water (WAC) and oil (OAC) absorption capacities of the flours were determined. Pasting characteristics were determined using Rapid Visco Analyser, respectively. The effect of γ-irradiation on L*, a* and b* values within ZATIV cultivar was almost never significant. ∆C and ∆E increased up to 4 kGy but decreased with increased γ-irradiation dose up to 8 kGy. Loose and packed bulk densities, and WAC were not significantly affected by γ-irradiation. The OAC of the SOSAT (1.16–1.36 g/g) was not significantly affected but the ZATIV (0.94–1.34 g/g) was significantly affected by γ-irradiation. The WACs of non-irradiated SOSAT and ZATIV pearl millet flours were 1.42 and 1.33 g/g while the irradiated counterparts varied from 1.15 to 1.42 and 1.24 to 1.39 g/g, respectively. Peak, trough, final, and setback viscosities decreased significantly (p < 0.05) with increased γ-irradiation dose. As irradiation dose increased, the peak time of SOSAT and ZATIV pearl millet cultivars significantly (p < 0.05) decreased from 5.84 to 5.07 and 5.58 to 4.94 min, respectively. However, pasting temperature of non-irradiated (61.80 °C) pearl millet was not significantly higher than the γ-irradiated (61.58–62.08 °C) samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu, J. O., & Amanda, M. (2009). Gamma irradiation of cowpea (Vigna unguiculata L. Walp) seeds: effect on colour, cooking quality and pasting characteristics. International Journal of Food Science and Technology, 44, 2335–2341.

    Article  CAS  Google Scholar 

  • Abu, J. O., Muller, K., Duodu, K. G., & Amanda, M. (2005). Functional properties of cowpea (Vigna unguiculata L. Walp) flours and pastes as affected by γ-irradiation. Food Chemistry, 93, 103–111.

    Article  Google Scholar 

  • Abu, J. O., Müller, K., Duodu, K. G., & Minnaar, A. (2006a). Gamma irradiation of cowpea (Vigna unguiculata L. Walp) flours and pastes: effects on functional, thermal and molecular properties of isolated proteins. Food Chemistry, 95, 138–147.

    Article  CAS  Google Scholar 

  • Abu, J. O., Duodu, K. G., & Minnaar, A. (2006b). Effect of cirradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chemistry, 95, 386–393.

    Google Scholar 

  • Afoakwa, E. O. (1996). Storage characteristics and quality evaluation of cowpea-fortified traditional foods. B.Sc. dissertation. Department of Nutrition and Food Science, University of Ghana, Legon-Accra, Ghana

  • Ali, M. A. M., El Tinay, A. H., & Abdalla, A. H. (2003). Effect of fermentation on the in vitro protein digestibility of pearl millet. Food Chemistry, 80, 51–54.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis (15th ed.). Washington: Association of Analytical Chemists.

    Google Scholar 

  • Arvanitoyannis, I. S., Stratakos, A., & Tsarouhas, P. (2009). Irradiation applications in vegetables and fruits: a review. Critical Reviews in Food Science and Nutrition, 49, 427–462.

    Article  CAS  Google Scholar 

  • Asoegwu, S.N., Ohanyere, S.O., Kanu, O.P., & Iwueke, C.N. (2006). Physical properties of African oil bean seed (Pentaclethra macrophylla). Agricultural Engineering International: the CIGR Ejournal, vol. VIII (Manuscript FP 05 006).

  • Chen, Y. J., Zhou, G. H., Zhu, X. D., Xu, X. L., Tang, X. Y., & Gao, F. (2007). Effect of low dose gamma irradiation on beef quality and fatty acid composition of beef intramuscular lipid. Meat Science, 75, 423–431.

    Article  CAS  Google Scholar 

  • Chung, O. K., & Pomeranz, Y. (1985). Aminoacids in cereal protein and protein fractions. In H. Finley (Ed.), Digestibility and amino acid availability in cereals and oilseeds (pp. 65–109). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • de Toledo, T. C. F., Canniatti-Brazaca, S. G., Arthur, V., & Piedade, S. M. S. (2007). Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains. Radiation Physics and Chemistry, 76, 1653–1656.

    Google Scholar 

  • Durojaiye, A. A., Falade, K. O., & Akingbala, J. O. (2010). Chemical composition and storage properties of fura from pearl millet (Pennisetum americanum). Journal of Food Processing and Preservation, 34(5), 820–830.

    Article  CAS  Google Scholar 

  • Falade, K. O. & Kolawole, T. A. (2011). Effect of irradiation dose on physical, functional and pasting properties of Cowpea (Vigna unguiculata (L.) Walp) cultivars. Journal of Food Process Engineering. doi:10.1111/j.1745-4530.2011.00664.x.

  • Falade, K. O., & Kolawole, T. A. (2012). Physical, functional, and pasting properties of different maize (Zea mays) cultivars as modified by an increase in γ-irradiation doses. International Journal of Food Science and Technology, 47, 801–807.

    Article  CAS  Google Scholar 

  • Falade, K. O., Ighravwe, E., & Ikoyo, S. S. (2011). Physichochemical characteristics of non-irradiated and γ-irradiated yams cultivars (Dioscorea rotundata, Dioscorea alata) and sweet potato (Ipomoea batatas (L) Lam). International Journal of Food Science and Technology, 46, 1186–1193.

    Article  CAS  Google Scholar 

  • FAO/IAEA/WHO ICGFI. (1991a). Regulations in the field of food irradiation. IAEA-TECDOC-585.

  • FAO/IAEA/WHO ICGFI. (1991b). Irradiation as a quarantine treatment of fresh fruits and vegetables. ICGFI Document No: 13, Vienna.

  • FAO/IAEA/WHO ICGFI. (1992). Irradiation of spices, herbs- and other vegetable seasonings. A compilation of technical date for its authorization and control. IAEA-TECDOC-639.

  • FAO/IAEA/WHO ICGFI. (1994). Irradiation as a quarantine treatment of fresh and vegetables. ICGFI Document No: 17, Vienna.

  • Fleming, S. E., Sosulski, F. W., Filara, A., & Humbert, E. S. (1974). Viscosity and water absorption characteristic of slurries of sunflower and soybean flours, concentrate and isolates. Journal of Food Science, 39, 188–190.

    Article  Google Scholar 

  • Freeman, J. E., & Bocan, B. J. (1973). Pearl millet: a potential crop for wet milling. Cereal Science Today, 16, 69–73.

    Google Scholar 

  • Greenwood, C. T., & Mackenzie, S. (1963). The irradiation of starch. Part I. Die Starke, 15, 444–448.

    Article  CAS  Google Scholar 

  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymer, 45, 253–267.

    Article  CAS  Google Scholar 

  • Hoseney, R. C., Rews, D. J., & Clark, H. (1987). Sorghum and pearl millet. In R. A. Olsen & K. J. Frey (Eds.), Nutritional quality of cereal grains: genetic and agronomic improvement (pp. 397–456). Madison: American Society of Agronomy.

    Google Scholar 

  • Houssou, P., & Ayernor, G. (2002). Appropriate processing and food functional properties of maize flour. African Journal of Science and Technology (AJST) Series, 3, 126–131.

    Google Scholar 

  • Hunt, R. W. G. (1991). Measuring Colour (2nd ed., pp. 75–76). New York: Ellis Horwood.

    Google Scholar 

  • Jideani, V. A., & Wedzicha, B. L. (1995). Shelf life and predominating microflora of a nonfermented pearl millet dough (Fura). Journal of Food Science, 11, 83–93.

    Google Scholar 

  • Kang, I. J., Byun, M. W., Yook, H. S., et al. (1999). Production of modified starches by gamma radiation. Radiation Physics and Chemistry, 54, 425–430.

    Article  CAS  Google Scholar 

  • Klopfenstein, C. F., & Hoseney, R. C. (1995). Nutritional properties of sorghum and the millets. In D. A. V. Dendy (Ed.), Sorghum and Millets: Chemistry and Technology (pp. 125–168). St. Paul, MN: American Association of Cereal Chemists.

  • Kwon, J. H., Byun, M. W., Kim, K. S., & Kang, I. J. (2000). Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng. Radiation Physics and Chemistry, 57, 309–313.

    Article  CAS  Google Scholar 

  • Lee, M., Lee, S., & Song, K. B. (2005). Effect of γ-irradiation on the physicochemical properties of soy protein isolate films. Radiation Physics and Chemistry, 72, 35–40.

    Article  CAS  Google Scholar 

  • Liu, Q., Donner, E., Yin, Y., Huang, R. L., & Fan, M. Z. (2006). The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chemistry, 99, 470–477.

    Article  CAS  Google Scholar 

  • Loaharanu, P. (1989). Worldwide Status of Food Irradiation and the FAO/IAEA/WHO/ITCUNCTAD/GATT International Conference on the Acceptance, Control of and Trade in Irradiated Food. Radiation Physics Chemistry, 34, 1013–1030.

    Google Scholar 

  • Maziya-Dixon, B., Dixon, A.G.O. & Adebowale, A.A. (2004). Targeting different end uses of cassava: genotypic variations for cyanogenic potentials and pasting properties. A paper presented at ISTRC-AB Symposium, 31 October–5 November 2004, Whitesands Hotel, Mombassa, Kenya

  • Maziya-Dixon, B., Sanni, L.O., Adebowale, A.A., Onabanjo, O.O. & Dixon, A.G.O. (2005). Effect of variety and drying methods on proximate composition and pasting properties of high quality cassava flour from yellow cassava roots. In Proceedings of the African Crop Science Society Conference, Enttebe, Uganda, 5–9 December.

  • Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: a review. Starch-Starke, 54, 559–592.

    Article  CAS  Google Scholar 

  • Mpotokwane, S. M., Gaditlhatlhelwe, E., Sebaka, A., & Jideani, V. A. (2008). Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering, 89, 93–98.

    Article  Google Scholar 

  • Newport Scientific. (1995). Operation Manual for the Series 4 Rapid Visco Analyzer (p. 93). Australia: Newport Scientific Pty, Ltd.

    Google Scholar 

  • Olakojo, S. A., & Akinlosotu, T. A. (2004). Comparative study of storage methods of maize grains in south Western Nigeria. African Journal of Biotechnology, 37, 362–365.

    Google Scholar 

  • Özden, Ö., & Erkan, N. (2010). Impacts of gamma radiation on nutritional components of minimal processed cultured sea bass (Dicentrarchus labrax). Iranian Journal of Fisheries Sciences, 9, 265–278.

    Google Scholar 

  • Pimpa, B., Muhammad, S. K. S., Hassan, M. A., Ghazali, Z., Hashim, K., & Kanjanasopa, D. (2007). Effect of electron beam irradiation on physicochemical properties of sago starch. Songklanakarin Journal of Science and Technology, 29(3), 759–768.

    Google Scholar 

  • Pinto, P., Ribeiro, R., Sousa, L., et al. (2004). Sanitation of chicken eggs by ionizing radiation: functional and nutritional assessment. Radiation Physics and Chemistry, 71, 33–36.

    Article  Google Scholar 

  • Ravi, R., & Sushelamma, N. S. (2005). Simultaneous optimization of a multiresponse system by desirability function analysis of boondi making: a case study. Journal of Food Science, 70, S539–S547.

    Article  CAS  Google Scholar 

  • Rombo, G. O., Taylor, J. R. N., & Minnaar, A. (2001). Effect of irradiation, with and without cooking of maize and kidney bean flours, on porridge viscosity and in vitro starch digestibility. Journal of the Science of Food and Agriculture, 81, 497–502.

    Article  CAS  Google Scholar 

  • Rombo, G. O., Taylor, J. R. N., & Minnaar, A. (2004). Irradiation of maize and kidney bean flours: effects on starch physicochemical properties. Journal of the Science of Food and Agriculture, 84, 350–356.

    Article  CAS  Google Scholar 

  • Sabularse, V. C., Liuzzo, J. A., Rao, R. M., & Grodner, R. M. (1992). Physicochemical characteristics of brown rice as influenced by gamma irradiation. Journal of Food Science, 57, 143–145.

    Article  CAS  Google Scholar 

  • Sandhu, K. S., Singh, N., & Kaur, M. (2004). Characteristics of different corn types and their grain fractions: physico-chemical, thermal, morphological and rheological properties of starches. Journal of Food Engineering, 64, 119–127.

    Article  Google Scholar 

  • Seisa, D., Osthoff, G., Hugo, C., Bothma, C., & Merwe, J. V. (2004). The effect of low-dose gamma irradiation and temperature on the microbiological and chemical changes during ripening of cheddar cheese. Radiation Physics and Chemistry, 69, 419–431.

    Article  CAS  Google Scholar 

  • Seog, H. M., Park, Y. K., Nam, Y. J., Shin, D. H., & Kim, J. P. (1987). Physicochemical properties of several sweet potato starches. Ham guk Nanghwa Hakhechi, 30, 179–185.

    CAS  Google Scholar 

  • Smith, G. A., & Friedman, M. (1984). Effect of carbohydrates and heat on the amino acid composition and chemically available lysine content of casein. Journal of Food Science, 49, 817–820.

    Article  CAS  Google Scholar 

  • Sosulski, F. W., Humbert, E. S., Bui, E. S., & Jones, J. I. (1976). Functional properties of rapeseed flours, concentrates and isolates. Journal of Food Science, 41, 1349–1351.

    Article  CAS  Google Scholar 

  • Urbain, W. M. (1986). Radiation chemistry of food components and of foods. In Food irradiation (pp. 37–81). London: Academic Press Inc.

    Google Scholar 

  • Wotton, M., & Bamunuarachchi, A. (1978). Water binding capacity of commercial produced native and modified starches. Starke/Starch, 33, 159–161.

    Google Scholar 

  • Wu, D. X., Shu, Q. Y., Wang, Z. H., & Xia, Y. W. (2002). Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice. Radiation Physics and Chemistry, 65, 79–86.

    Article  CAS  Google Scholar 

  • Yu, Y., & Wang, J. (2007). Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice. Food Research International, 40, 297–303.

    Article  CAS  Google Scholar 

  • Zayas, J. F. (1997). Functionality of proteins in food (p. 81). New York: Springer.

    Book  Google Scholar 

  • Zuleta, A., Dyner, L., Sambucett, M. E., & de Francisco, A. (2006). Effect of gamma irradiation on the functional and nutritive properties of rice flours from different cultivars. Cereal Chemistry, 83, 76–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the University of Ibadan for the financial support for the project through the award of MacArthur Multi-disciplinary Research Grant. Dr. S. A. Adesanmi, Mr, E. C. Akueche and staff of the National (Nigeria) Atomic Energy Commission, Sheda, Abuja, Nigeria, are appreciated for guidance and help during irradiation of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolawole O. Falade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falade, K.O., Kolawole, T.A. Effect of γ-Irradiation on Colour, Functional and Physicochemical Properties of Pearl Millet [Pennisetum glaucum (L) R. Br.] Cultivars. Food Bioprocess Technol 6, 2429–2438 (2013). https://doi.org/10.1007/s11947-012-0981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0981-8

Keywords

Navigation