Skip to main content
Log in

Microwave-Assisted Extraction of Anthocyanins from Black Currant Marc

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This paper reports on the process optimization study of anthocyanin extraction from black currant marc by microwave-assisted extraction (MAE) using acidic solvents. Maximum yields of anthocyanins were achieved at pH 2 with an extraction time of 10 min with a microwave power of 700 W. The anthocyanin yields in MAE were compared with those obtained by conventional solvent extraction (CE) using citric or hydrochloric acids, and citric acid and water with a sulfur concentration of 50 ppm. A significant reduction of extraction time was achieved using MAE; maximum anthocyanin yield was obtained after 10 min using MAE, while using CE only after 300 min. Furthermore, the amount of solvent used halved; the mass ratio of marc to solvent was 1:40 in CE and 1:20 in MAE. Additionally, the final anthocyanin concentration in the solvent phase of MAE increased by 20 % compared to the conventional extraction with hydrochloric acid at pH 2 and temperature of 80 °C. The results suggest that microwave-assisted extraction is a more efficient technique for the extraction of valuable compounds from black currant residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bengoechea, M. L., Sancho, A. I., Bartolome, B., Estrella, I., Cordoves, C. G., & Hernandez, M. T. (1997). Phenolic composition of industrially manufactured purees and concentrates from peach and apple fruits. Journal of Agricultural and Food Chemistry, 45, 4071–4075.

    Article  CAS  Google Scholar 

  • Cabrita, L., Fossen, T., & Andersen, Ø. M. (2000). Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 68, 101–107.

    Article  CAS  Google Scholar 

  • Cacacae, J. E., & Mazza, G. (2002). Extraction of anthocyanins and other phenolics from black currants with sulfured water. Journal of Agricultural and Food Chemistry, 50, 5939–5946.

    Article  Google Scholar 

  • Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: a review. Food Chemistry, 113(4), 859–871.

    Article  Google Scholar 

  • Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., Qu, C., et al. (2008). Dynamic microwave-assisted extraction of flavonoids from Herba Epimedii. Separation and Purification Technology, 59(1), 50–57.

    Article  CAS  Google Scholar 

  • Eskilsson, C. S., & Bjorklund, E. (2000). Analytical-scale microwave assisted extraction. Journal of Chromatography. A, 902(1), 227–250.

    Article  CAS  Google Scholar 

  • Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217–225.

    Article  CAS  Google Scholar 

  • Gizir, A. M., Turker, N., & Artuvan, E. (2008). Pressurized acidified water extraction of black carrot (Daucus carota ssp. Sativus var. Atroruibens Alef) anthocyanins. European Food Research and Technology, 226, 363–370.

    Article  CAS  Google Scholar 

  • Goiffon, J. P., Mouly, P., & Gaydou, E. M. (1999). Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Analytica Chimica Acta, 382(1–2), 39–50.

    Article  CAS  Google Scholar 

  • Hemwimon, S., Pavasant, P., & Shotipruk, A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Separation and Purification Technology, 54(1), 44–50.

    Article  CAS  Google Scholar 

  • Hodúr, C., Kertész, S., Beszédes, S., László, Z., & Szabó, G. (2009). Concentration of marc extracts by membrane techniques. Desalination, 241(1–3), 265–271.

    Article  Google Scholar 

  • Iversen, C. K. (1999). Black currant nectar: effect of processing and storage on anthocyanin and ascorbic acid content. Journal of Food Science, 64(1), 37–41.

    Article  CAS  Google Scholar 

  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2000). Microwave heating applications in environmental engineering. Resources, Conservation and Recycling, 34, 75–90.

    Article  Google Scholar 

  • Kapasakalidis, P. G., Rastall, R. A., & Gordon, M. H. (2006). Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. Journal of Agricultural and Food Chemistry, 54, 4016–4021.

    Article  CAS  Google Scholar 

  • Kapasakalidis, P. G., Rastall, R. A., & Gordon, M. H. (2009). Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Robes nigrum L.) pomace. Journal of Agricultural and Food Chemistry, 57(10), 4342–4351.

    Google Scholar 

  • Khajeh, M. (2009). Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box–Behnken design. Journal of Food Composition and Analysis, 22(4), 343–346.

    Article  CAS  Google Scholar 

  • Landbo, A.-K., & Meyer, A. S. (2004). Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innovative Food Science and Emerging Technologies, 5, 503–513.

    Article  CAS  Google Scholar 

  • Lapornik, B., Prosek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering, 71, 214–222.

    Article  Google Scholar 

  • Liu, Z., Wei, G., Guo, Y., & Kennedy, J. F. (2005). Image study of pectin extraction from orange skin assisted by microwave. Carbohydrate Polymers, 64(4), 548–552.

    Google Scholar 

  • Longo, L., & Vasapollo, G. (2006). Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chemistry, 94(2), 226–231.

    Article  CAS  Google Scholar 

  • Morales-Muñoz, S., Luque-García, J. L., & de Castro, L. (2006). Pure and modified water assisted by auxiliary energies: an environmental friendly extractant for sample preparation. Analytica Chimica Acta, 557(1–2), 278–286.

    Article  Google Scholar 

  • Nielsen, I. L., Haren, G. R., Magnussen, E. L., Dragsted, L. O., & Rasmussen, S. E. (2003). Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. Journal of Agricultural and Food Chemistry, 51, 5861–5866.

    Article  CAS  Google Scholar 

  • Patil, G., Madhusudhan, M. C., Ravindra, B. B., & Raghavarao, K. S. M. S. (2009). Extraction, dealcoholization and concentration of anthocyanin from red radish. Chemical Engineering and Processing: Process Intensification, 48(1), 364–369.

    Article  CAS  Google Scholar 

  • Pensado, L., Casais, C., Mejuto, C., & Cela, R. (2000). Optimization of the extraction of polycyclic aromatic hydrocarbons from wood samples by the use of microwave energy. Journal of Chromatography. A, 869(1–2), 505–513.

    Article  CAS  Google Scholar 

  • Pinelo M, Del Fabbro P, Manzocco L, Nunez M.J & Nicoli M.C (2005). Optimization of continuous phenol extraction from Vitis vinifera byproducts. Food Chemistry, 92 (1), 109-117.

    Article  CAS  Google Scholar 

  • Pizarro, C., González-Sáiz, J. M., & Pérez-del-Notario, N. (2006). Multiple response optimisation based on desirability functions of a microwave-assisted extraction method for the simultaneous determination of chloroanisoles and chlorophenols in oak barrel sawdust. Journal of Chromatography. A, 1132(1–2), 8–14.

    Article  CAS  Google Scholar 

  • Proestos, C., & Komaitis, M. (2008). Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT- Food Science and Technology, 41(4), 652–659.

    Article  CAS  Google Scholar 

  • Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8–9), 867–871.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15(1), 19–38.

    Article  CAS  Google Scholar 

  • Sun, Y., Liao, X., Wang, Z., Hu, X., & Chen, F. (2007). Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography - mass spectrometry. European Food Research and Technology, 225(3–4), 511–523.

    Google Scholar 

  • Zheng, Z., & Shetty, K. (1998). Cranberry processing waste for solid state fungal inoculant production. Process Biochemistry, 33(3), 323–329.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out at the Un\iversity of Oulu with the financial support from the Graduate School in Chemical Engineering. The Thule Institute, the Tauno Tönning Foundation the Finnish Food Research Foundation (Elintarvikkeiden Tutkimussäätiö), the Olvi Foundation, and the Finnish Cultural Foundation are also gratefully acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Pap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pap, N., Beszédes, S., Pongrácz, E. et al. Microwave-Assisted Extraction of Anthocyanins from Black Currant Marc. Food Bioprocess Technol 6, 2666–2674 (2013). https://doi.org/10.1007/s11947-012-0964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0964-9

Keywords

Navigation