Food and Bioprocess Technology

, Volume 6, Issue 10, pp 2666–2674 | Cite as

Microwave-Assisted Extraction of Anthocyanins from Black Currant Marc

  • Nora Pap
  • Sándor Beszédes
  • Eva Pongrácz
  • Liisa Myllykoski
  • Miklòsnè Gábor
  • Ernő Gyimes
  • Cecília Hodúr
  • Riitta L. Keiski
Original Paper

Abstract

This paper reports on the process optimization study of anthocyanin extraction from black currant marc by microwave-assisted extraction (MAE) using acidic solvents. Maximum yields of anthocyanins were achieved at pH 2 with an extraction time of 10 min with a microwave power of 700 W. The anthocyanin yields in MAE were compared with those obtained by conventional solvent extraction (CE) using citric or hydrochloric acids, and citric acid and water with a sulfur concentration of 50 ppm. A significant reduction of extraction time was achieved using MAE; maximum anthocyanin yield was obtained after 10 min using MAE, while using CE only after 300 min. Furthermore, the amount of solvent used halved; the mass ratio of marc to solvent was 1:40 in CE and 1:20 in MAE. Additionally, the final anthocyanin concentration in the solvent phase of MAE increased by 20 % compared to the conventional extraction with hydrochloric acid at pH 2 and temperature of 80 °C. The results suggest that microwave-assisted extraction is a more efficient technique for the extraction of valuable compounds from black currant residue.

Keywords

Black currant marc Anthocyanin Extraction Microwave-assisted extraction Anthocyanin composition 

References

  1. Bengoechea, M. L., Sancho, A. I., Bartolome, B., Estrella, I., Cordoves, C. G., & Hernandez, M. T. (1997). Phenolic composition of industrially manufactured purees and concentrates from peach and apple fruits. Journal of Agricultural and Food Chemistry, 45, 4071–4075.CrossRefGoogle Scholar
  2. Cabrita, L., Fossen, T., & Andersen, Ø. M. (2000). Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 68, 101–107.CrossRefGoogle Scholar
  3. Cacacae, J. E., & Mazza, G. (2002). Extraction of anthocyanins and other phenolics from black currants with sulfured water. Journal of Agricultural and Food Chemistry, 50, 5939–5946.CrossRefGoogle Scholar
  4. Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: a review. Food Chemistry, 113(4), 859–871.CrossRefGoogle Scholar
  5. Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., Qu, C., et al. (2008). Dynamic microwave-assisted extraction of flavonoids from Herba Epimedii. Separation and Purification Technology, 59(1), 50–57.CrossRefGoogle Scholar
  6. Eskilsson, C. S., & Bjorklund, E. (2000). Analytical-scale microwave assisted extraction. Journal of Chromatography. A, 902(1), 227–250.CrossRefGoogle Scholar
  7. Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217–225.CrossRefGoogle Scholar
  8. Gizir, A. M., Turker, N., & Artuvan, E. (2008). Pressurized acidified water extraction of black carrot (Daucus carota ssp. Sativus var. Atroruibens Alef) anthocyanins. European Food Research and Technology, 226, 363–370.CrossRefGoogle Scholar
  9. Goiffon, J. P., Mouly, P., & Gaydou, E. M. (1999). Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Analytica Chimica Acta, 382(1–2), 39–50.CrossRefGoogle Scholar
  10. Hemwimon, S., Pavasant, P., & Shotipruk, A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Separation and Purification Technology, 54(1), 44–50.CrossRefGoogle Scholar
  11. Hodúr, C., Kertész, S., Beszédes, S., László, Z., & Szabó, G. (2009). Concentration of marc extracts by membrane techniques. Desalination, 241(1–3), 265–271.CrossRefGoogle Scholar
  12. Iversen, C. K. (1999). Black currant nectar: effect of processing and storage on anthocyanin and ascorbic acid content. Journal of Food Science, 64(1), 37–41.CrossRefGoogle Scholar
  13. Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2000). Microwave heating applications in environmental engineering. Resources, Conservation and Recycling, 34, 75–90.CrossRefGoogle Scholar
  14. Kapasakalidis, P. G., Rastall, R. A., & Gordon, M. H. (2006). Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. Journal of Agricultural and Food Chemistry, 54, 4016–4021.CrossRefGoogle Scholar
  15. Kapasakalidis, P. G., Rastall, R. A., & Gordon, M. H. (2009). Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Robes nigrum L.) pomace. Journal of Agricultural and Food Chemistry, 57(10), 4342–4351.Google Scholar
  16. Khajeh, M. (2009). Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box–Behnken design. Journal of Food Composition and Analysis, 22(4), 343–346.CrossRefGoogle Scholar
  17. Landbo, A.-K., & Meyer, A. S. (2004). Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innovative Food Science and Emerging Technologies, 5, 503–513.CrossRefGoogle Scholar
  18. Lapornik, B., Prosek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering, 71, 214–222.CrossRefGoogle Scholar
  19. Liu, Z., Wei, G., Guo, Y., & Kennedy, J. F. (2005). Image study of pectin extraction from orange skin assisted by microwave. Carbohydrate Polymers, 64(4), 548–552.Google Scholar
  20. Longo, L., & Vasapollo, G. (2006). Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chemistry, 94(2), 226–231.CrossRefGoogle Scholar
  21. Morales-Muñoz, S., Luque-García, J. L., & de Castro, L. (2006). Pure and modified water assisted by auxiliary energies: an environmental friendly extractant for sample preparation. Analytica Chimica Acta, 557(1–2), 278–286.CrossRefGoogle Scholar
  22. Nielsen, I. L., Haren, G. R., Magnussen, E. L., Dragsted, L. O., & Rasmussen, S. E. (2003). Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. Journal of Agricultural and Food Chemistry, 51, 5861–5866.CrossRefGoogle Scholar
  23. Patil, G., Madhusudhan, M. C., Ravindra, B. B., & Raghavarao, K. S. M. S. (2009). Extraction, dealcoholization and concentration of anthocyanin from red radish. Chemical Engineering and Processing: Process Intensification, 48(1), 364–369.CrossRefGoogle Scholar
  24. Pensado, L., Casais, C., Mejuto, C., & Cela, R. (2000). Optimization of the extraction of polycyclic aromatic hydrocarbons from wood samples by the use of microwave energy. Journal of Chromatography. A, 869(1–2), 505–513.CrossRefGoogle Scholar
  25. Pinelo M, Del Fabbro P, Manzocco L, Nunez M.J & Nicoli M.C (2005). Optimization of continuous phenol extraction from Vitis vinifera byproducts. Food Chemistry, 92 (1), 109-117.CrossRefGoogle Scholar
  26. Pizarro, C., González-Sáiz, J. M., & Pérez-del-Notario, N. (2006). Multiple response optimisation based on desirability functions of a microwave-assisted extraction method for the simultaneous determination of chloroanisoles and chlorophenols in oak barrel sawdust. Journal of Chromatography. A, 1132(1–2), 8–14.CrossRefGoogle Scholar
  27. Proestos, C., & Komaitis, M. (2008). Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT- Food Science and Technology, 41(4), 652–659.CrossRefGoogle Scholar
  28. Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8–9), 867–871.CrossRefGoogle Scholar
  29. Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15(1), 19–38.CrossRefGoogle Scholar
  30. Sun, Y., Liao, X., Wang, Z., Hu, X., & Chen, F. (2007). Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography - mass spectrometry. European Food Research and Technology, 225(3–4), 511–523.Google Scholar
  31. Zheng, Z., & Shetty, K. (1998). Cranberry processing waste for solid state fungal inoculant production. Process Biochemistry, 33(3), 323–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nora Pap
    • 1
    • 5
  • Sándor Beszédes
    • 2
  • Eva Pongrácz
    • 3
  • Liisa Myllykoski
    • 1
  • Miklòsnè Gábor
    • 4
  • Ernő Gyimes
    • 4
  • Cecília Hodúr
    • 2
  • Riitta L. Keiski
    • 1
  1. 1.Department of Process and Environmental Engineering, Mass and Heat Transfer Process LaboratoryUniversity of OuluOuluFinland
  2. 2.Department of Process EngineeringUniversity of Szeged, Faculty of EngineeringSzegedHungary
  3. 3.Thule Institute, NorTech OuluUniversity of OuluOuluFinland
  4. 4.Department of Food EngineeringUniversity of Szeged, Faculty of EngineeringSzegedHungary
  5. 5.Biotechnology and Food ResearchMTT Agrifood Research FinlandJokioinenFinland

Personalised recommendations