Skip to main content
Log in

Effect of Natamycin on Physical Properties of Starch Edible Films and Their Effect on Saccharomyces cerevisiae Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effectiveness of using a tapioca starch–glycerol matrix containing natamycin to control Saccharomyces cerevisiae activity in a model system was studied and the effect of the formulation on physico-chemical properties was also evaluated. The presence of natamycin tended to depress firmness at break and Young modulus and to increase strain at break. Colour was also affected by antimycotic presence. The importance of these changes will be determined by the characteristics of the product to which the antimicrobial film will be applied. The films developed were capable of acting as a hurdle against S. cerevisiae in food systems during storage: they acted as an effective reservoir of the antimycotic which was also available to prevent an external contamination. The films containing 1.85 mg natamycin/dm2 of natamycin developed a fungistatic effect till 72 h of storage, while those with a 3.70-mg natamycin/dm2 concentration developed a fungicidal action allowing the selection of the proper formulation according to the antimicrobial goal pursuit. As natamycin addition affects mechanical properties and colour of the films, it is advisable to use the lower natamycin concentration that allows the attainment of the goal pursued for film application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arzate-Vázquez, I., Chanona-Pérez, J. J., Calderón-Domínguez, G., Terres-Rojas, E., Garibay-Febles, V., Martínez-Rivas, A., & Gutiérrez-López, G. F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers, 87, 289–299.

    Article  Google Scholar 

  • ASTM E1925. (1995). Standard test method for yellowness index of plastics. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • ASTM E96-00. (2000). Standard test method for water vapor transmission of materials. Philadelphia: American Society for Testing and Materials.

  • Basch C, Carpenco J, Jagus R & Flores S (2011) Individual and combined performance of nisin and potassium sorbate supported in tapioca strach edible fims. Proceedings of the 11th. International Congress on Engineering and Food (ICEF 11), 2, 979–980. ISBN: 978-960-89789-4-2. SET ISBN: 978–96.

  • Baumgartner, S., Lahajnar, G., Sepe, A., & Kristl, J. (2005). Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using H NMR and MRI methods. Journal of Pharmaceutics and Biopharmaceutics, 59, 299–306.

    Article  CAS  Google Scholar 

  • Chen, M. H., Yeh, G. H., & Chiang, B. H. (1996). Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. Journal of Food Processing and Preservation, 20, 379–390.

    Article  CAS  Google Scholar 

  • Cong, F. S., Zhang, Y. G., & Dong, W. Y. (2007). Use of surface coatings with natamycin to improve the storability of Hami melon at ambient temperature. Postharvest Biology and Technology, 46(1), 71–75.

    Article  CAS  Google Scholar 

  • de Oliveira, T., Soares, N., Pereira, R., & Fraga, K. (2007). Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese preservation. Food Packaging and Technology, 20, 423–432.

    Google Scholar 

  • Dos Santos Pires, A. C., De Ferreira Soares, N. F., De Andrade, N. J., Mendes Da Silva, L. H., Peruch Camilloto, G., & Campos Bernardes, P. (2008). Development and evaluation of active packaging for sliced mozzarella preservation. Packaging Technology and Science, 21(7), 375–383.

    Article  Google Scholar 

  • El-Diasty, E., El-Kaseh, R., & Salem, R. (2009). The effect of natamycin on keeping quality and organoleptic characters of yoghurt. Arab Journal of Biotechnology, 12(1), 41–48.

    Google Scholar 

  • Fajardo, P., Martins, J. T., Fuciños, C., Pastrana, L., Teixeira, J. A., & Vicente, A. A. (2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 101(4), 349–356.

    Article  CAS  Google Scholar 

  • Flores, S. K., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films. Influence of filmmaking and potassium sorbate. Food Research International, 40(2), 257–265.

    Article  CAS  Google Scholar 

  • Flores, S. K., Haedo, A., & Campos, C. (2007). Antimicrobial performance of potassium sorbate supperted in tapioca starch edible films. Eur Food Res Technology, 225, 375–384.

    Article  CAS  Google Scholar 

  • Flores SK, Gerschenson LN, Jagus RJ & Sanjurjo KJ (2011) Strategies for Extending Shelf Life of Foods Using Antimicrobial Edible Films. Focus on Food Engineering (ISBN: 978-1-61209-895-1). Editor: Robert J. Shreck. Editorial: Nova Science Publishers, Inc. Hauppauge, NY, USA. Chapter 2, 69–99

  • Franssen, L. R., Rumsey, T. R., & Krochta, J. M. (2004). Whey protein film composition effects on potassium sorbate and natamycin diffusion. Journal of Food Science, 69(5), 347–350.

    Article  Google Scholar 

  • Gallo, L. I., & Jagus, R. J. (2007). Modelling Saccharomyces cerevisiae inactivation by natamycin in liquid cheese whey. Brazilian Journal of Food Technology, 9, 311–316.

    Google Scholar 

  • Gennadios, A., Weller, C., & Gooding, C. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21, 395–409.

    Article  Google Scholar 

  • Ghanbarzadeha, B., & Oromiehib, A. R. (2008). Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43, 209–215.

    Article  Google Scholar 

  • Gontard, N., Guilbert, S., & Cuq, J.-L. (1992). Edible wheat gluten films: influence variables on film properties using methodology of the main process response surface. Journal of Food Science, 57(1), 190–195.

    Article  CAS  Google Scholar 

  • Gould, G. (1997). Methods of preservation and extension of shelf life. International Journal of Food Microbiology, 33(1), 51–64.

    Article  Google Scholar 

  • Hanušová, K., Šťastná, M., Votavová, L., Klaudisová, K., Dobiáš, J., Voldřich, M., & Marek, M. (2010). Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging. Journal of Food Engineering, 99(4), 491–496.

    Article  Google Scholar 

  • Hill B, Roger T & Vorhagen FW (1997) Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Transactions on Graphics, (16), No. 2.

  • Horcas, I., Fernandez, R., Gomez-Rodriguez, J. M., & Colchero, J. (2007). WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78(1), 013705.

    Article  CAS  Google Scholar 

  • Koontz, J. L., Marcy, J. E., Barbeau, W. E., & Duncan, S. E. (2003). Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution. Journal of Agricultural and Food Chemistry, 51(24), 7111–7114.

    Article  CAS  Google Scholar 

  • Kristo, E., Koutsoumanis, K., & Biliaderis, C. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hidrocolloids, 22, 373–386.

    Article  CAS  Google Scholar 

  • Mano, J., & Viana, J. (2001). Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6. Polymer testing, 20, 937–943.

    Article  CAS  Google Scholar 

  • Pintado, C. M. B. S., Ferreira, M. A. S. S., & Sousa, I. (2010). Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control, 21(3), 240–246. Elsevier.

    Article  CAS  Google Scholar 

  • Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Science and Technology, 38, 859–865.

    Article  CAS  Google Scholar 

  • Ramos, O. L., Silva, S. I., Soaresa, J. C., Fernandesa, J. C., Poçasa, M. F., Pintadoa, M. E., & Malcata, F. X. (2012). Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Research International, 45(1), 351–361.

    Article  CAS  Google Scholar 

  • Sanjurjo, K., Flores, S., Gerschenson, L., & Jagus, R. J. (2006). Study of the performance of nisin supported in edible films. Food Research International, 39(6), 749–754.

    Article  CAS  Google Scholar 

  • Sebti, I., Blanc, D., Carnet-Ripochem, A., Saurel, R., & Coma, V. (2004). Experimental study and modeling of nisin diffusion in agarose gels. Journal of Food Engineering, 63, 185–190.

    Article  Google Scholar 

  • Sokal, R., & Rohlf, J. (2000). Biometry. The principles and practice of statistics in biological research. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • te Welscher, Y. M., Ten Napel, H. H., Balagué, M. M., Souza, C. M., Riezman, H., De Kruijff, B., & Breukink, E. (2008). Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. The Journal of Biological Chemistry, 283(10), 6393–6401.

    Article  Google Scholar 

  • te Welscher, Y. M., Jones, L., van Leeuwen, M. R., Dijksterhuis, J., De Kruijff, B., Eitzen, G., & Breukink, E. (2010). Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrobial Agents and Chemotherapy, 54(6), 2618–2625.

    Article  Google Scholar 

  • Thomas, A. H. (1976). Analysis and assay of polyene antifungal antibiotics. The Analyst, 101, 321–339.

    Article  CAS  Google Scholar 

  • Trezza, T., & Krochta, J. (2000). Color stability of edible coatings during prolonged storage. Journal of Food Science, 65(1), 1166–1169.

    Article  CAS  Google Scholar 

  • Ture, H., Eroglu, E., Ozen, B., & Soyer, F. (2011). Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese. International Journal of Food Science Technology, 46(1), 154–160.

    Article  CAS  Google Scholar 

  • Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by University of Buenos Aires (UBACyT 20020100100125), National Agency of Scientific and Technical Research (PICT 1172), and CONICET (PIP 531). The authors also wish to thank Industrias del Maíz S.A. (Argentina), Mallickrodt (Argentina) and DSM (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa J. Jagus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollé Resa, C.P., Gerschenson, L.N. & Jagus, R.J. Effect of Natamycin on Physical Properties of Starch Edible Films and Their Effect on Saccharomyces cerevisiae Activity. Food Bioprocess Technol 6, 3124–3133 (2013). https://doi.org/10.1007/s11947-012-0960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0960-0

Keywords

Navigation