Skip to main content
Log in

Near Infrared Spectroscopy—Advanced Analytical Tool in Wheat Breeding, Trade, and Processing

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Due to its suitability to be processed in wide range of final products, wheat has an upmost significance among all cereals. The global wheat marketing are becoming increasingly demanding with regard to all aspects of wheat quality. To fulfil these demands, each link in wheat production chain—breeding, trade, and processing should be supported by objective and reliable quality assessment tool such as the near infrared spectroscopy (NIRS) technique. The aim of this paper is to summarize the recent advances in the applications of NIRS technique for wheat quality control applicable in wheat breeding, trade, and processing. Although heavily intertwined, each link is characterized by specific NIRS applications, with ultimate aim—the production of consumer-appealing and safe final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AACC (2000). Approved Methods of the Association. 10th ed. The American Association of Cereal Chemists, St. Paul, USA.

  • Agelet, L. E., & Hurburgh, C. R., Jr. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40, 246–260.

    CAS  Google Scholar 

  • Arazuri, S., Arana, J. I., Arias, N., Arregui, L. M., Gonzalez-Torralba, J., & Jaren, C. (2012). Rheological parameters determination using near infrared technology in whole wheat grain. Journal of Food Engineering, 111, 115–121.

    Google Scholar 

  • Armstrong, P. R., Maghirang, E. B., Xie, F., & Dowell, F. E. (2006). Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes. Applied Engineering in Agricuture, 22, 453–457.

    Google Scholar 

  • Baeten, V., & Dardenne, P. (2002). Spectroscopy: developments in instrumentation and analysis. Grasas y Aceites, 53, 45–63.

    CAS  Google Scholar 

  • Baker, J. E., Dowell, F. E., & Throne, J. E. (1999). Detection of parasitized rice weevils in wheat kernels with near-infrared spectroscopy. Biological Control, 16, 88–90.

    Google Scholar 

  • Bao, J. S., Cai, Y. Z., & Corke, H. J. (2001). Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy. Food Science, 66, 936–939.

    CAS  Google Scholar 

  • Berardo, N., Pisacane, V., Battilani, P., Scandolara, A., Pietri, A., & Marocco, A. (2005). Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 53, 8128–8134.

    CAS  Google Scholar 

  • Bertrand, D., Robert, P., & Loisel, F. (1985). Identification of some wheat varieties by near infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 36, 1120–1124.

    Google Scholar 

  • Bhandari, D. G., Millar, S. J., & Scotter, C. N. G. (2000). Prediction of wheat protein and HMW-glutenin contents by near infrared (NIR) spectroscopy. In Shewry & Tatham (Eds.), Wheat Gluten (pp. 313–316). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. Trends in Analytical Chemistry, 21, 240–250.

    CAS  Google Scholar 

  • Blažek, J., Jirsa, O., & Hrušková, M. (2005). Prediction of wheat milling characteristics by near-infrared reflectance spectroscopy. Czech Journal of Food Sciences, 23, 145–151.

    Google Scholar 

  • Börjesson, T., Stenberg, B., & Schnürer, J. (2007). Near-infrared spectroscopy for estimation of ergosterol content in barley: a comparison between reflectance and transmittance techniques. Cereal Chemistry, 84, 231–236.

    Google Scholar 

  • Bramble, T., Dowell, F. E., & Herrman, T. J. (2006). Single-kernel near-infrared protein prediction and the role of kernel weight in hard red winter wheat. Applied Engineering in Agriculture, 22, 945–949.

    Google Scholar 

  • Brenna, O. V., & Berardo, N. (2004). Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize. Journal of Agricultural and Food Chemistry, 52, 5577–5582.

    CAS  Google Scholar 

  • Brown, G. L., Curtis, P. S., & Osborne, B. G. (1993). Factors affecting the measurement of hardness by near infrared reflectance spectroscopy of ground wheat. Journal of Near Infrared Spectroscopy, 1, 147–152.

    CAS  Google Scholar 

  • Büchman, N. B. (1996). Near infrared networking—the ultimate control. In A. M. C. Davies & P. Williams (Eds.), Near infrared spectroscopy: The Future Waves, Proceedings of 7 th International Conference on Near Infrared Spectroscopy (pp. 479–483). Chichester: NIR Publications.

    Google Scholar 

  • Büchmann, N. B., & Runfors, S. (1995). The standardization of Infratec 1221 near infrared transmission instruments in the Danish network used for the determination of protein and moisture in grains. Journal of Near Infrared Spectroscopy, 3, 35–42.

    Google Scholar 

  • Büchmann, N. B., Josefsson, H., & Cowe, I. A. (2001). Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near-infrared transmission (NIT) network. Cereal Chemistry, 78, 572–577.

    Google Scholar 

  • Büning-Pfaue, H. (2003). Analysis of water in food by near infrared spectroscopy. Food Chemistry, 82, 107–115.

    Google Scholar 

  • Casada, M. E., & O'Brien, K. L. (2003). Accuracy and repeatability of protein content measurements for wheat during storage. Applied Engineering in Agriculture, 19, 203–209.

    Google Scholar 

  • Cassells, J. A., Reuss, R., Osborne, B. G., & Wesley, I. J. (2007). Near infrared spectroscopic studies of changes in stored grain. Journal of Near Infrared Spectroscopy, 15, 161–167.

    CAS  Google Scholar 

  • Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18, 72–83.

    CAS  Google Scholar 

  • Chen, Y. R., Delwiche, S. R., & Hruschka, W. R. (1995). Classification of hard red wheat by feedforward backpropagation neural networks. Cereal Chemistry, 72, 317–319.

    CAS  Google Scholar 

  • Christy, A. A., & Kvalheim, O. M. (2007). Latent-variable analysis of multivariate data in infrared spectrometry. In Ozaki et al. (Eds.), Near-infrared Spectroscopy in Food Science and Technology (pp. 145–162). Hoboken: Wiley.

    Google Scholar 

  • Clark, D. H., Mayland, H. F., & Lamb, R. C. (1987). Mineral analysis of forages with near infrared reflectance spectroscopy. Agronomy Journal, 79, 485–490.

    CAS  Google Scholar 

  • Cocchi, M., Corbellini, M., Foca, G., Lucisano, M., Pagani, M. A., Tassi, L., et al. (2005). Classification of bread wheat flours in different quality categories by a wavelet-based feature selection/classification algorithm on NIR spectra. Analytica Chimica Acta, 544, 100–107.

    CAS  Google Scholar 

  • Cozzolino, D., Delucchi, I., Kholi, M., & Vázquez, D. (2006). Use of near infrared reflectance spectroscopy to evaluate quality characteristics in whole-wheat grain. Agricultura Técnica, 66, 370–375.

    Google Scholar 

  • Crosbie, G. B., Osborne, B. G., Wesley, I. J., & Adriansz, T. D. (2007). Screening of wheat for flour swelling volume by near-infrared spectroscopy. Cereal Chemistry, 84, 379–383.

    CAS  Google Scholar 

  • De Girolamo, A., Lippolis, V., Nordkvist, E., & Visconti, A. (2009). Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-transform near infrared (FT-NIR) spectroscopy. Food Additives & Contaminants: Part A, 26, 907–917.

    Google Scholar 

  • Deaville, E. R., & Flinn, P. C. (2000). Near infrared (NIR) spectroscopy: an alternative approach for the estimation of forage quality and voluntary intake. In Givens et al. (Eds.), Forage evaluation in ruminant nutrition (pp. 201–220). Wallingford: CAB International.

    Google Scholar 

  • Delwiche, S. R. (1995). Single wheat kernel analysis by near-infrared transmittance: protein content. Cereal Chemistry, 72, 11–16.

    CAS  Google Scholar 

  • Delwiche, S. R. (1998). Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. Journal of Cereal Science, 27, 241–254.

    CAS  Google Scholar 

  • Delwiche, S. R. (2003). Classification of scab- and other mold-damaged wheat kernels by near-infrared reflectance spectroscopy. Transactions of ASAE, 46, 731–738.

    Google Scholar 

  • Delwiche, S. R. (2005). High-speed optical sorting of soft wheat for reduction of deoxynivalenol. Plant Disease, 89, 1214–1219.

    CAS  Google Scholar 

  • Delwiche, S. R., & Gaines, C. S. (2005). Wavelength selection for monochromatic and bichromatic sorting of Fusarium-damaged wheat. Applied Engineering in Agriculture, 21, 681–688.

    Google Scholar 

  • Delwiche, S. R., & Hareland, G. A. (2004). Detection of scab damaged hard red spring wheat kernels by near-infrared reflectance. Cereal Chemistry, 81, 643–649.

    CAS  Google Scholar 

  • Delwiche, S. R., & Hruschka, W. R. (2000). Protein content of bulk wheat from near-infrared reflectance of individual kernels. Cereal Chemistry, 77, 86–88.

    CAS  Google Scholar 

  • Delwiche, S. R., & Massie, D. R. (1996). Classification of wheat by visible and near-infrared reflectance spectroscopy. Cereal Chemistry, 73, 399–405.

    CAS  Google Scholar 

  • Delwiche, S. R., & Norris, K. H. (1993). Classification of hard red wheat by near-infrared diffuse reflectance spectroscopy. Cereal Chemistry, 70, 29–35.

    CAS  Google Scholar 

  • Delwiche, S. R., Bean, M. M., Miller, R. E., Webb, B. D., & Williams, P. C. (1995). Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chemistry, 72, 182–187.

    CAS  Google Scholar 

  • Delwiche, S. R., McKenzie, K. S., & Webb, B. D. (1996). Quality characteristics in rice by near-infrared reflectance analysis of wholegrain milled samples. Cereal Chemistry, 73, 257–263.

    CAS  Google Scholar 

  • Delwiche, S. R., Graybosch, R. A., & Peterson, J. (1998). Predicting protein composition, biochemical properties, and dough-handling properties of hard red winter wheat flour by near-infrared reflectance. Cereal Chemistry, 75, 412–416.

    CAS  Google Scholar 

  • Delwiche, S. R., Graybosch, R. A., Hansen, L. E., Souza, E., & Dowell, F. E. (2006). Single kernel near-infrared analysis of tetraploid (Durum) wheat for classification of the waxy condition. Cereal Chemistry, 83, 287–292.

    CAS  Google Scholar 

  • Delwiche, S. R., Graybosch, R. A., Amand, P. St., & Bai, G. (2011a). Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 59, 4002–4008.

    CAS  Google Scholar 

  • Dowell, F. E. (1998). Automated color classification of single wheat kernels using visible and near-infrared reflectance. Cereal Chemistry, 75, 142–144.

    CAS  Google Scholar 

  • Dowell, F. E. (2000). Differentiating vitreous and nonvitreous durum wheat kernels by using near-infrared spectroscopy. Cereal Chemistry, 77, 155–158.

    CAS  Google Scholar 

  • Dowell, F. E., Ram, M. S., & Seitz, L. M. (1999). Predicting scab, vomitoxin and ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 76, 573–576.

    CAS  Google Scholar 

  • Dowell, F. E., Pearson, T. C., Maghirang, E. B., Xie, F., & Wicklow, D. T. (2002). Reflectance and transmittance spectroscopy applied to detecting fumonisin in single corn kernels infected with Fusarium verticillioides. Cereal Chemistry, 79, 222–226.

    CAS  Google Scholar 

  • Dowell, F. E., Maghirang, E. B., Graybosch, R. A., Baenziger, P. S., Baltensperger, D. D., & Hansen, L. E. (2006a). An automated near-infrared system for selecting individual kernels based on specific quality characteristics. Cereal Chemistry, 83, 537–543.

    CAS  Google Scholar 

  • Dowell, F. E., Maghirang, E. B., Xie, F., Lookhart, G. L., Pierce, R. O., Seabourn, B. W., et al. (2006b). Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chemistry, 83, 529–536.

    CAS  Google Scholar 

  • Dowell, F. E., Maghirang, E. B., Graybosch, R. A., Berzonsky, W. A., & Delwiche, S. R. (2009a). Selecting and sorting waxy wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 86, 251–255.

    CAS  Google Scholar 

  • Dowell, F. E., Maghirang, E. B., & Baenziger, P. S. (2009b). Automated single-kernel sorting to select for quality traits in wheat breeding lines. Cereal Chemistry, 86, 527–533.

    CAS  Google Scholar 

  • Dowell, F. E., Maghirang, E. B., & Jayaraman, V. (2010). Measuring grain and insect characteristics using NIR laser array technology. Applied Engineering in Agriculture, 26, 165–169.

    Google Scholar 

  • Epstein, J., Morris, C. F., & Huber, K. C. (2002). Instrumental texture of white salted noodles prepared from recombinant inbred lines of wheat differing in the three granule bound starch synthase (waxy) genes. Journal of Cereal Science, 35, 51–63.

    CAS  Google Scholar 

  • Fernández-Ibañez, V., Soldado, A., Martínez-Fernández, A., & de la Roza-Delgado, B. (2009). Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chemistry, 113, 629–634.

    Google Scholar 

  • Finney, P. L., Kinney, J. E., & Donelson, J. R. (1988). Prediction of damaged starch in straight-grade flour by near-infrared reflectance analysis of whole ground wheat. Cereal Chemistry, 65, 449–452.

    CAS  Google Scholar 

  • Foca, G., Cocchi, M., Li Vigni, M., Caramanico, R., Corbellini, M., & Ulrici, A. (2009). Different feature selection strategies in the wavelet domain applied to NIR-based quality classification models of bread wheat flours. Chemometrics and Intelligent Laboratory Systems, 99, 91–100.

    CAS  Google Scholar 

  • Foca, G., Ferrari, C., Sinelli, N., Mariotti, M., Lucisano, M., Caramanico, R., et al. (2011). Minimisation of instrumental noise in the acquisition of FT-NIR spectra of bread wheat using experimental design and signal processing techniques. Analytical and Bioanalytical Chemistry, 399, 1965–1973.

    CAS  Google Scholar 

  • Fontaine, J., Schirmer, B., & Horr, J. (2002). Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. Agricultural and Food Chemistry, 50, 3902–3911.

    CAS  Google Scholar 

  • Frankhuizen, R. (2008). NIR analysis of dairy products. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis, pp. 415–438. Handbook of near-infrared analysis (pp. 347–386). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Garnsworthy, P. C., Wiseman, J., & Fegeros, K. (2000). Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. Journal of Agricultural Science, 135, 409–417.

    Google Scholar 

  • Gergely, S., & Salgó, A. (2003). Changes in moisture content during wheat maturation—what is measured by near infrared spectroscopy? Journal of Near Infrared Spectroscopy, 11, 17–26.

    CAS  Google Scholar 

  • Gergely, S., & Salgó, A. (2005). Changes in carbohydrate content during wheat maturation—what is measured by near infrared spectroscopy? Journal of Near Infrared Spectroscopy, 13, 9–18.

    CAS  Google Scholar 

  • Gergely, S., & Salgó, A. (2007). Changes in protein content during wheat maturation—what is measured by NIR spectroscopy? Journal of Near Infrared Spectroscopy, 15, 49–58.

    CAS  Google Scholar 

  • Ghaedian, A. R., & Wehling, R. L. (1997). Discrimination of sound and granary-weevil-larva-infested wheat kernels by near-infrared diffuse reflectance spectroscopy. Journal of AOAC International, 80, 997–1005.

    CAS  Google Scholar 

  • Ghosh, S., & Rodgers, J. (2008). NIR analysis of textiles. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 485–520). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Gradenecker, F. (2003). NIR on-line testing in grain milling. Cereal Foods World, 48, 18–19.

    Google Scholar 

  • Greffeuille, V., Abecassis, J., Rousset, M., Oury, F.-X., Faye, A., L'Helgouac'h, C. B., et al. (2006). Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theoretical and Applied Genetics, 114, 1–12.

    CAS  Google Scholar 

  • Hruschka, W. (2001). Data analysis: wavelength selection methods. In Williams & Norris (Eds.), Near-infrared technology in the agricultural and food industries (pp. 39–48). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Hrušková, M., & Šmejda, P. (2003). Wheat flour dough alveograph characteristics predicted by NIRSystems 6500. Czech Journal of Food Sciences, 21, 28–33.

    Google Scholar 

  • Hrušková, M., Bednářová, M., & Novotný, F. (2001). Wheat flour dough rheological characteristics predicted by NIRSystems 6500. Czech Journal of Food Sciences, 19, 213–218.

    Google Scholar 

  • Hulasare, R. B., Jayas, D. S., & Dronzek, B. L. (2003). Grain grading systems. In Chakraverty et al. (Eds.), Handbook of postharvest technology—cereals, fruits, vegetables, tea, and spices (pp. 41–55). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Jespersen, B. M., & Munck, L. (2009). Cereals and cereal products. In Sun (Ed.), Infrared spectroscopy for food quality analysis and control (pp. 275–319). Burlington: Elsevier, Inc.

    Google Scholar 

  • Jirsa, O., Hrušková, M., & Švec, I. (2008). Near-infrared prediction of milling and baking parameters of wheat varieties. Journal of Food Engineering, 87, 21–25.

    CAS  Google Scholar 

  • Kawano, S. (2002). Application to agricultural products and foodstuffs. In Siesler et al. (Eds.), Near-infrared spectroscopy: principles, instruments, applications (pp. 269–287). Weinheim: Wiley-VCH.

    Google Scholar 

  • Kays, S. E., Barton, F. E., II, & Windham, W. R. (1999). NIR analysis of dietary fiber. In Cho et al. (Eds.), Complex carbohydrate in foods (pp. 291–304). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Lee, K. A. (2007). On-line analysis in food engineering. In Ozaki et al. (Eds.), Near-infrared spectroscopy in food science and technology (pp. 361–378). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Lin, H., & Ying, Y. (2009). Theory and application of near infrared spectroscopy in assessment of fruit quality: a review. Sensing and Instrumentation for Food Quality and Safety, 3, 130–141.

    Google Scholar 

  • Lindell, I. (2011). Evaluation of tools for analysis and quantification of Fusarium mycotoxins. MSc Thesis. Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.

  • Liu, Y., Delwiche, S. R., & Graybosch, R. A. (2009). Two-dimensional correlation analysis of near infrared spectral intensity variations of ground wheat. Journal of Near Infrared Spectroscopy, 17, 41–50.

    Google Scholar 

  • Maghirang, E. B., & Dowell, F. E. (2003). Hardness measurement of bulk wheat by single-kernel visible and near-infrared reflectance spectroscopy. Cereal Chemistry, 80, 316–322.

    CAS  Google Scholar 

  • Maghirang, E. B., Dowell, F. E., Baker, J. E., & Throne, J. E. (2003). Automated detection of single wheat kernels containing live or dead insects using near-infrared reflectance spectroscopy. Transactions of ASAE, 46, 1277–1282.

    Google Scholar 

  • Majcen, N., & Taylor, P. (2004). Case study of the effectiveness of a distributed metrology infrastructure for chemical measurements: supporting measurements for the regulated content of proteins in wheat in Slovenia. Accreditation and Quality Assurance, 9, 485–487.

    CAS  Google Scholar 

  • Manley, M., Van Zyl, L., & Osborne, B. G. (2002). Using Fourier transform near infrared spectroscopy in determining kernel hardness, protein and moisture content of whole wheat flour. Journal of Near Infrared Spectroscopy, 10, 71–76.

    CAS  Google Scholar 

  • Mark, H., Ritchie, G. E., Roller, R. W., Ciurczak, E. W., Tso, C., & MacDonald, S. A. (2002). Validation of a near-infrared transmission spectroscopic procedure part A: validation protocols. Journal of Pharmaceutical and Biomedical Analysis, 28, 251–260.

    CAS  Google Scholar 

  • Massie, D. R., & Norris, K. H. (1965). Spectral reflectance and transmittance properties of grain in the visible and near infrared. Transactions of ASAE, 8, 598–600.

    Google Scholar 

  • Mastilović, J., Torbica, A., Živancev, D. & Pojić, M. (2010). Development of novel approaches for micro- and macro methods based evaluation of wheat varieties. In: Proceedings of the 5th International Congress Flour–Bread'09 and 7th Croatian Congress of Cereal Technologists, 21–23 October 2009, Opatija, Croatia, pp 39–44.

  • McClure, W. F. (2007). Introduction. In Ozaki et al. (Eds.), Near-infrared spectroscopy in food science and technology (pp. 1–10). Hoboken: John Wiley & Sons.

    Google Scholar 

  • McGoverin, C. M., Weeranantanaphan, J., Downey, G., & Manley, M. (2010). The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities. Journal of Near Infrared Spectroscopy, 18, 87–111.

    CAS  Google Scholar 

  • Mentink, R. L., Hoffman, P. C., & Bauman, L. M. (2006). Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. Journal of Dairy Science, 89, 2320–2326.

    CAS  Google Scholar 

  • Millar, S.J. (2003). The development of near infrared (NIR) spectroscopy calibrations for the prediction of wheat and flour quality (Project report No. 310). CCFRA, Chipping Campden, UK.

  • Miralbés, C. (2003). Prediction chemical composition and alveograph parameters on wheat by near-infrared transmittance spectroscopy. Journal of Agricultural and Food Chemistry, 51, 6335–6339.

    Google Scholar 

  • Miralbés, C. (2004). Quality control in the milling industry using near infrared transmittance spectroscopy. Food Chemistry, 88, 621–628.

    Google Scholar 

  • Miralbés, C. (2008). Discrimination of European wheat varieties using near infrared reflectance spectroscopy. Food Chemistry, 106, 386–389.

    Google Scholar 

  • Möller, J. (2009). European grain network: results of the interlaboratory study conducted in Dec 2008/Jan 2009. Hillerød: FOSS Analytical AB.

    Google Scholar 

  • Möller, J. (2011). European grain network: results of the interlaboratory study conducted in Jan/Feb 2011. Hillerød: FOSS Analytical AB.

    Google Scholar 

  • Morgan, J. E., & Williams, P. C. (1995). Starch damage in wheat flours: a comparison of enzymatic, iodometric, and near-infrared reflectance techniques. Cereal Chemistry, 72, 209–212.

    CAS  Google Scholar 

  • Murray, I. (2004). Scattered information: philosophy and practice of near infrared spectroscopy. In Davies & Garrido-Varo (Eds.), Proceedings of the 11th International Conference on Near Infrared Spectroscopy (pp. 1–12). Chichester: NIR publications.

    Google Scholar 

  • Mutlu, A. C., Boyaci, I. H., Genis, H. E., Ozturk, R., Basaran-Akgul, N., Sanal, T., et al. (2011). Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. European Food Research and Technology, 233, 267–274.

    CAS  Google Scholar 

  • Neethirajan, S., Karunakaran, C., Jayas, D. S., & White, N. D. G. (2007). Detection techniques for stored-product insects in grain. Food Control, 18, 157–162.

    CAS  Google Scholar 

  • Nielsen, J. P., Pedersen, D. K., & Munck, L. (2003). Development of nondestructive screening methods for single kernel characterization of wheat. Cereal Chemistry, 80, 274–280.

    CAS  Google Scholar 

  • Nørgaard, L., Bro, R., Westad, F., & Engelsen, S. B. (2006). A modification of canonical variates analysis to handle highly collinear multivariate data. Journal of Chemometrics, 20, 425–435.

    Google Scholar 

  • Osborne, B. G. (2000). Recent developments in NIR analysis of grain and grain products. Cereal Foods World, 45, 11–15.

    CAS  Google Scholar 

  • Osborne, B. G. (2006). Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes. Journal of Near Infrared Spectroscopy, 14, 93–101.

    CAS  Google Scholar 

  • Osborne, B. G. (2007). Flours and breads. In Ozaki et al. (Eds.), Near-infrared spectroscopy in food science and technology (pp. 281–296). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Osborne, B. G., & Douglas, S. (1981). Measurement of the degree of starch damage in flour by near infrared reflectance analysis. Journal of the Science of Food and Agriculture, 32, 328–332.

    Google Scholar 

  • Osborne, B. G., & Fearn, T. (1986). Near-infrared spectroscopy in food analysis. Harlow: Longman Scientific and Technical Publishing.

    Google Scholar 

  • Ozaki, Y., Morita, S., & Du, Y. (2007). Spectral analysis. In Ozaki et al. (Eds.), Near-infrared spectroscopy in food science and technology (pp. 47–72). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Pasha, I., Anjum, F. M., & Morris, C. F. (2010). Grain hardness: a major determinant of wheat quality. Food Science and Technology International, 16, 511–522.

    CAS  Google Scholar 

  • Pasikatan, M. C., & Dowell, F. E. (2004). High-speed NIR segregation of high- and low-protein single wheat seeds. Cereal Chemistry, 81, 145–150.

    CAS  Google Scholar 

  • Pasikatan, M. C., Haque, E., Steele, J. L., Spillman, C. K., & Milliken, G. A. (2001). Evaluation of a near-infrared reflectance spectrometer as a granulation sensor for first-break ground wheat: studies with six wheat classes. Cereal Chemistry, 78, 730–736.

    CAS  Google Scholar 

  • Pasikatan, M. C., Steele, J. L., Haque, E., Spillman, C. K., & Milliken, G. A. (2002). Evaluation of a near-infrared reflectance spectrometer as a granulation sensor for first-break ground wheat: studies with hard red winter wheats. Cereal Chemistry, 79, 92–97.

    CAS  Google Scholar 

  • Pasikatan, M. C., Haque, E., Spillman, C. K., Steele, J. L., & Milliken, G. A. (2003). Granulation sensing of first-break ground wheat using a near-infrared reflectance spectrometer: studies with soft red winter wheats. Journal of the Science of Food and Agriculture, 83, 151–157.

    CAS  Google Scholar 

  • Pasquini, C. (2003). Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14(2), 198–219.

    CAS  Google Scholar 

  • Pawlinsky, T., & Williams, P. (1998). Prediction of wheat bread-baking functionality in whole kernels, using near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 6, 121–127.

    CAS  Google Scholar 

  • Pearson, T. C., Wicklow, D. T., Maghirang, E. B., Xie, F., & Dowell, F. E. (2001). Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. Transactions of ASAE, 44, 1247–1254.

    CAS  Google Scholar 

  • Peiris, K. H. S., Pumphrey, M. O., & Dowell, F. E. (2009). NIR absorbance characteristics of deoxynivalenol and of sound and Fusarium-damaged wheat kernels. Journal of Near Infrared Spectroscopy, 17, 213–221.

    CAS  Google Scholar 

  • Peiris, K., Pumphrey, M. O., Dong, Y., Maghirang, E. B., Berzonsky, W., & Dowell, F. E. (2010). Near-infrared spectroscopic method for the identification of Fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chemistry, 87, 511–517.

    CAS  Google Scholar 

  • Pettersson, & Åberg. (2003). Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control, 14, 229–232.

    CAS  Google Scholar 

  • Pojić, M. (2006). Validation of near infrared transmittance spectroscopy for its application in wheat quality control. MSc Thesis (in Serbian). Faculty of Technology, University of Novi Sad, Novi Sad, Serbia.

  • Pojić, M. (2010). Defining the procedure for calibration model development for near infrared spectroscopy. PhD Thesis (in Serbian). Faculty of Technology, University of Novi Sad, Novi Sad, Serbia.

  • Pojić, M., & Janić Hajnal, E. (2011). Operating methods in contemporary grain warehouse. In Mastilović (Ed.), Contemporary approach to grain warehouse management (pp. 121–199). Novi Sad: Institute of Food Technology. In Serbian.

    Google Scholar 

  • Pojić, M. & Mastilović, J. (2005). The standardisation of NIRT Infratec 1241 instruments in the Serbian network. In: Proceedings of 3rd International Congress Flour-Bread 05, 26–29 October 2005, Opatija, Croatia, pp 85–91.

  • Pojić, M., Mastilović, J., Pestorić, M., & Radusin, T. (2008). The ensuring of traceability of measurements for cereal quality determination. Food Processing Quality and Safety, 35, 11–18.

    Google Scholar 

  • Pojić, M., Mastilović, J., Pestorić, M., & Daković, S. (2009). A comparative study of two analytical methods for fat content determination in brewer's grits. Journal of the American Society of Brewing Chemists, 67, 167–169.

    Google Scholar 

  • Pojić, M., Mastilović, J., Palić, D., & Pestorić, M. (2010). The development of near infrared spectroscopy (NIRS) calibration for prediction of ash content in legumes on the basis of two different reference methods. Food Chemistry, 123, 800–805.

    Google Scholar 

  • Pram Nielsen, J., Bertrand, D., Micklander, E., Courcoux, P., & Munck, L. (2001). Study of NIR spectra, particle size distributions and chemical parameters of wheat flours: a multi-way approach. Journal of Near Infrared Spectroscopy, 9, 275–284.

    Google Scholar 

  • Ridgway, C., & Chambers, J. (1996). Detection of external and internal insect infestation in wheat by near-infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 71, 251–264.

    CAS  Google Scholar 

  • Ridgway, C., & Chambers, J. (1998). Detection of insects inside wheat kernels by NIR imaging. Journal of Near Infrared Spectroscopy, 6, 115–119.

    CAS  Google Scholar 

  • Ridgway, C., Chambers, J., & Cowe, I. A. (1999). Detection of grain weevils inside single wheat kernels by a very near infrared two-wavelength model. Journal of Near Infrared Spectroscopy, 7, 213–221.

    CAS  Google Scholar 

  • Rubenthaler, G. L., & Bruinsma, B. L. (1978). Lysine estimation in cereals by NIR. Crop Science, 18, 1039–1042.

    CAS  Google Scholar 

  • Rubenthaler, G. L., & Pomeranz, Y. (1987). Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cerel Chemistry, 64, 407–411.

    CAS  Google Scholar 

  • Scholz, É., Prieto-Linde, M. L., Gergely, S., Salgó, A., & Johansson, E. (2007). Possibilities of using near infrared reflectance/transmittance spectroscopy for determination of polymeric protein in wheat. Journal of the Science of Food and Agriculture, 87, 1523–1532.

    CAS  Google Scholar 

  • Seabourn, B. W., Bean, S. R., Lookhart, G. L., & Chung, O. K. (1998). Prediction of gliadin and soluble/insoluble HMW glutenin fractions in hard winter wheat flours by near-infrared reflectance spectroscopy. Cereal Foods World, 43, 518–520.

    Google Scholar 

  • Shadow, W., & Carrasco, A. (2000). Practical single-kernel NIR/visible analysis for small grains. Cereal Foods World, 45, 16–18.

    Google Scholar 

  • Shenk, J. S., & Westerhaus, M. O. (1991a). Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Science, 31, 469–474.

    Google Scholar 

  • Shenk, J. S., & Westerhaus, M. O. (1991b). Population structuring of near infrared spectra and modified partial least squares regression. Crop Science, 31, 1548–1555.

    CAS  Google Scholar 

  • Shenk, J. S., Workman, J. J., Jr., & Westerhaus, M. O. (2008). Application of NIR spectroscopy to agricultural products. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 347–386). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Shewry, P. R., Charmet, G., Branlard, G., Lafiandra, D., Gergely, S., Salgó, A., Saulnier, L., Bedő, Z., Mills, E. N. C., & Warda, J.L., (2012). Developing new types of wheat with enhanced health benefits. Trends in Food Science & Technology doi:10.1016/j.tifs.2012.01.003,1-8.

  • Shimizu, N., Katsura, J., Yanagisawa, T., Tezuka, B., Maruyama, Y., Inoue, S., et al. (1998). Evaluating techniques for rice grain quality using near infrared transmission spectroscopy. Journal of Near Infrared Spectroscopy, 6, A111–A116.

    CAS  Google Scholar 

  • Siesler, H. W. (2008). Basic principles of near-infrared spectroscopy. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 7–19). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Song, H., Delwiche, S. R., & Chen, Y.-R. (1995). Neural network classification of wheat using single kernel near-infrared transmittance spectra. Optical Engineering, 34, 2927–2934.

    Google Scholar 

  • Sorvaniemi, J., Kinnunen, A., Tsados, A., & Malkki, Y. (1993). Using partial least-squares regression and multiplicative scatter correction for FT-NIR data evaluation of wheat flours. Journal of Food Science and Technology, 26, 251–258.

    Google Scholar 

  • Tseng, C.-H., Ma, K., & Wang, N. (2004). Internet-enabled near-infrared analysis of oil seeds. In Luthria (Ed.), Oil extraction and analysis: critical issues and comparative studies (pp. 166–192). Champaign: AOCS Press.

    Google Scholar 

  • Váradi, M., Boros, I., Turza, S., & Budai, J. (1999). A new approach to the method approval system in Codex Alimentarius: perspectives of near infrared spectroscopy for official methods. In Davies & Giangiacomo (Eds.), Proceedings of 9 th International Conference on Near Infrared Spectroscopy (pp. 37–40). Chichester: NIR publications.

    Google Scholar 

  • Vázquez, D., Williams, P. C., & Watts, B. (2007). NIR spectroscopy as a tool for quality screening. In Buck et al. (Eds.), Wheat Production in Stressed Environments (pp. 527–533). Dordecht: Springer.

    Google Scholar 

  • Villareal, C. P., de la Cruz, N. M., & Juliano, B. O. (1994). Rice amylose analysis by near-infrared transmittance spectroscopy. Cereal Chemistry, 71, 292–296.

    CAS  Google Scholar 

  • Wang, W., & Paliwal, J. (2007). Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 1, 193–207.

    Google Scholar 

  • Wang, D., Dowell, F. E., & Lacey, R. E. (1999). Single wheat kernel color classification by using near-infrared reflectance spectra. Cereal Chemistry, 76, 30–33.

    CAS  Google Scholar 

  • Wang, D., Dowell, F. E., & Chung, D. S. (2001). Assessment of heat-damaged wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 78, 625–628.

    CAS  Google Scholar 

  • Wang, D., Dowell, F. E., & Dempster, R. (2002). Determining vitreous subclasses of hard red spring wheat using visible/near-infrared spectroscopy. Cereal Chemistry, 79, 418–422.

    CAS  Google Scholar 

  • Ward, J. L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A.-M., Nyström, L., et al. (2008). The Healthgrain cereal diversity screen: concept, results, and prospects. Journal of Agricultural and Food Chemistry, 56, 9699–9709.

    CAS  Google Scholar 

  • Wesley, I. J., & Blakeney, A. B. (2001). Investigation of starch-protein-water mixtures using dynamic near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 9, 211–220.

    CAS  Google Scholar 

  • Wesley, I. J., Uthayakumaran, S., Anderssen, R. S., Cornish, G. B., Bekes, F., Osborne, B. G., et al. (1999). A curve-fitting approach to the near infrared reflectance measurement of wheat flour proteins which influence dough quality. Journal of Near Infrared Spectroscopy, 7, 229–240.

    CAS  Google Scholar 

  • Wesley, I. J., Larroque, O., Osborne, B. G., Azudin, N., Allen, H., & Skerritt, J. H. (2001). Measurement of gliadin and glutenin content of flour by NIR spectroscopy. Journal of Cereal Science, 34, 125–133.

    CAS  Google Scholar 

  • Wesley, I. J., Osborne, B. G., Larroque, O., & Bekes, F. (2008). Measurement of the protein composition of single wheat kernels using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 16, 505–516.

    CAS  Google Scholar 

  • Williams, P. C. (1979). Screening wheat for protein and hardness by near infrared reflectance spectroscopy. Cereal Chemistry, 56, 169–172.

    Google Scholar 

  • Williams, P. C. (1987). Variables affecting near-infrared reflectance spectroscopic analysis. In Williams & Norris (Eds.), Near-infrared technology in the agricultural and food industries (pp. 143–167). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Williams, P. C. (1991). Prediction of wheat kernel texture in whole grains by near-infrared transmittance. Cereal Chemistry, 68, 112–114.

    Google Scholar 

  • Williams, P. (2004). The status of research on application of NIRS to prediction of Fusarium Head Blight (Scab) in terms of DON. In: Davies & Garrido-Varo (eds) Near Infrared Spectroscopy: Proceedings of the 11th International Conference on Near Infrared Spectroscopy, pp 1051–1055. NIR Publications, Chichester, UK.

  • Williams, P. (2007). Grains and seeds. In Ozaki et al. (Eds.), Near-infrared spectroscopy in food science and technology (pp. 165–217). Hoboken: Wiley.

    Google Scholar 

  • Williams, P. (2008). Sampling, sample preparation, and sample selection. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 267–295). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Williams, P. C., & Sobering, D. C. (1993). Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1, 25–32.

    CAS  Google Scholar 

  • Williams, P. C., Thompson, B. N., Wetzel, D., McLay, G. W., & Loewen, D. (1981). Near-infrared instruments in flour mill quality control. Cereal Foods World, 26, 234–237.

    Google Scholar 

  • Williams, P. C., Preston, K. R., Norris, K. H., & Starkey, P. M. (1984). Determination of amino acids in wheat and barley by near-infrared reflectance spectroscopy. Journal of Food Science, 49, 17–20.

    CAS  Google Scholar 

  • Williams, P. C., Norris, K. H., & Sobering, D. C. (1985). Determination of protein and moisture in wheat and barley by near-infrared transmission. Journal of Agricultural and Food Chemistry, 33, 239–244.

    CAS  Google Scholar 

  • Williams, P. C., El-Haramein, F. J., Ortiz-Fereira, G., & Srivastava, J. P. (1988). Preliminary observations on the determination of wheat strength by near-infrared reflectance. Cereal Chemistry, 62, 109–114.

    Google Scholar 

  • Windham, W. R., Gaines, C. S., & Leffler, R. G. (1993). Effect of wheat moisture content on hardness scores determined by near-infrared reflectance and on hardness score standardization. Cereal Chemistry, 70, 662–666.

    Google Scholar 

  • Workman, J. J., Jr. (2008). NIR spectroscopy calibration basics. In Burns & Ciurczak (Eds.), Handbook of near-infrared analysis (pp. 123–150). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Zeaiter, M., Roger, J.-M., & Bellon-Maurel, V. (2005). Robustness of models developed by multivariate calibration Part II: the influence of pre-processing methods. Trends in Analytical Chemistry, 24, 437–444.

    CAS  Google Scholar 

  • Zhang, C., Shen, Y., Chen, J., Xiao, P., & Bao, J. (2008). Nondestructive prediction of total phenolics, flavonoid contents, and antioxidant capacity of rice grain using near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 56, 8268–8272.

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education and Science, Republic of Serbia (Project No. III46001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica M. Pojić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pojić, M.M., Mastilović, J.S. Near Infrared Spectroscopy—Advanced Analytical Tool in Wheat Breeding, Trade, and Processing. Food Bioprocess Technol 6, 330–352 (2013). https://doi.org/10.1007/s11947-012-0917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0917-3

Keywords

Navigation