Skip to main content
Log in

Extraction of Polyphenols from Red Grape Pomace Assisted by Pulsed Ohmic Heating

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present work is devoted to the investigation of the effect of pulsed ohmic heating (POH) on cells membrane damage and intensification of polyphenols extraction from red grape pomace. Untreated, POH-treated and freeze-thawed samples were compared. The effects of electric field strength (E = 100–800 V/cm) and the percentage of ethanol in water (E/W = 0–50 %) on polyphenols extraction were discussed. Measurements of electrical conductivity and electric energy consumption were performed for POH pretreatment optimization. Results show that POH treatment results in cells membrane denaturation. This permeabilization increases with the elevation of electric field strength and temperature. POH pretreatment accelerates the extraction kinetics of total polyphenols from grape pomace. Freeze-thawed samples are always accompanied with a high degree of cell damage and high concentration of polyphenols in the extract. The highest extraction yields were obtained with a POH pretreatment at 400 V/cm followed by a diffusion step for 60 min at 50 °C and with a solvent composed of 30 % of ethanol in water. In these conditions, the polyphenol content was 36 % more than untreated samples. The proposed technique (POH pretreatment) appears to be promising for future industrial applications of polyphenols extraction from pomace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

d :

Diameter (mm)

E :

Electric field strength (V/cm)

h :

Height (mm)

I :

Current intensity (A)

K 1 :

Peleg rate constant (min 100 g DM/g GAE)

K 2 :

Peleg’s capacity constant (100 g DM/g GAE)

n :

Number of pulses

N :

Number of trains

N Z :

Number of trains to attain the value of Z = 0.8

m :

Mass of grape pomace (g)

m s :

Mass of the sample (grape pomace + water) (kg)

q :

Maximum of extraction rate (g GAE/100 g DM min)

R :

Resistance (ohm)

T :

Time (min)

t i :

Pulse duration (μs)

t t :

Total time of POH treatment (s)

t POH :

Effective time of POH treatment (s)

T :

Temperature (°C)

T z :

Characteristic damage temperature (°C)

Δt :

Time between pulses (ms)

U :

Voltage (V)

W :

Energy consumption (J/kg)

Y 0 :

Initial yield of total phenolic compounds (g GAE/100 g DM)

Y max :

Maximum extraction yield of phenolic compounds estimated by Peleg’s model (g GAE/100 g DM)

Y(t):

Yield of total phenolic compounds (g GAE/100 g DM)

Z :

Disintegration index

Z p :

Polyphenols extraction index

σ :

Electrical conductivity (S/m)

τ z :

Characteristic damage time (s)

α :

Electrical conductivity at T = 0 °C (S/m)

β :

Slope of σ vs. T (S/m °C)

d:

Completely damaged tissue

u:

Untreated (intact)

DM:

Dry matter

E/W:

Ratio between ethanol and water

FC:

Folin Ciocalteu

GAE:

Gallic acid equivalent

PEF:

Pulsed electric field

POH:

Pulsed ohmic heating

References

  • Allali, H., Marchal, L., & Vorobiev, E. (2008). Blanching of strawberries by ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology, 3(3), 406–414.

    Article  Google Scholar 

  • Angersbach, A., Heinz, V., & Knorr, D. (2002). Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnology Progress, 18, 597–603.

    Article  CAS  Google Scholar 

  • Boussetta N (2011a) Intensification de l’extraction des polyphénols par électrotechnologies pour la valorisation des marcs de Champagne. PhD thesis, Université de Technologie de Compiègne.

  • Boussetta, N., Lanoisellé, J.-L., Bedel-Cloutour, C., & Vorobiev, E. (2009). Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: effect of sulphur dioxide and thermal treatments. Journal of Food Engineering, 95, 192–198.

    Article  CAS  Google Scholar 

  • Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C., & Lanoisellé, J. (2009). Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. Journal of Agriculture and Food Chemistry, 57, 1491–1497.

    Article  CAS  Google Scholar 

  • Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chemistry, 128, 364–370.

    Article  CAS  Google Scholar 

  • Brasseur, T., Angenot, L., Pinemail, I., & Deby, C. (1986). Antiradicals, antilipid peroxidation and antioxidant properties of flavonoids. Bull. Liaison Groupe Polyphenols, 13, 507.

    Google Scholar 

  • Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., & Velic, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81, 236–242.

    Article  CAS  Google Scholar 

  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies, 9, 85–91.

    Article  CAS  Google Scholar 

  • De Campos, L., Fernanda, V., Pedrosa, R., & Ferreira, S. (2008). Free radical scavenging of grape pomace extracts from Cabernet sauvignon (Vitis vinifera). Bioresource Technology, 99, 8413–8420.

    Article  Google Scholar 

  • De Vito, F., Ferrari, G., Lebovka, N., Shynkaryk, M., & Vorobiev, E. (2008). Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food and Bioprocess Technology, 1(4), 307–313.

    Article  Google Scholar 

  • Delsart C, Cholet C, Ghidossi R, Poupot C, Grimi N, Vorobiev E, Milisic V & Mietton-Peuchot M (2010) Effect of pulsed electric field on grape polyphenols extraction. European conference on fluid-particle separation (FPS 2010), 5–7 October 2010, Lyon, France.

  • Donsì, F., Ferrari, G., Fruilo, M., & Pataro, G. (2010). Pulsed electric field-assisted vinification of Aglianico and Piedirosso grapes. Journal of Agricultural and Food Chemistry, 58(22), 11606–11615.

    Article  Google Scholar 

  • Dugand, L. R. (1980). Natural antioxidants. In M. G. Simic & M. Karel (Eds.), Autooxidation in food and biological systems (pp. 261–295). New York: Plenum.

    Google Scholar 

  • El-Belghiti, K., Rabhi, Z., & Vorobiev, E. (2005). Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture, 85(2), 213–218.

    Article  CAS  Google Scholar 

  • Favarel, J.L. (1998). Protection de la vendange et extraction des jus en vendange blanche. Compte Rendu, Extrait de « Cinquantenaire ITV France » .

  • Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20, 618–626.

    Article  Google Scholar 

  • Grimi, N., Praporscic, I., Lebovka, N. I., & Vorobiev, E. (2007). Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Separation and Purification Technology, 58, 267–273.

    Article  CAS  Google Scholar 

  • Grimi, N., Lebovka, N. I., Vorobiev, E., & Vaxelaire, J. (2009). Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophysics, 4, 191–198.

    Article  Google Scholar 

  • Jackson, R. S. (1994). Wine sciences. New York: Academic.

    Google Scholar 

  • Jalté, M., Lanoisellé, J. L., Lebovka, N. I., & Vorobiev, E. (2009). Freezing of potato tissue pre-treated by pulsed electric fields. LWT- Food Science and Technology, 42(2), 576–580.

    Article  Google Scholar 

  • Ju, Z. Y., & Howard, L. R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agriculture and Food Chemestry, 51, 5207–5213.

    Article  CAS  Google Scholar 

  • Kammerer, D., Claus, A., Schieber, A., & Carle, A. (2005). A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. Journal of Food Science, 70, 157–163.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44, 213–223.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346.

    Article  Google Scholar 

  • Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007). Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644.

    Article  Google Scholar 

  • Lebovka, N. I., Shynkaryk, M., & Vorobiev, E. (2007). Moderate electric field treatment of sugarbeet tissues. Biosystems Engineering, 96(1), 47–56.

    Article  Google Scholar 

  • Lebovka, N. I., Kupchik, M. P., Sereda, K., & Vorobiev, E. (2008). Electrostimulated thermal permeabilisation of potato tissues. Biosystems Engineering, 99, 76–80.

    Article  Google Scholar 

  • Loginova, K. V., Vorobiev, E., Bals, O., & Lebovka, N. I. (2011). Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. Journal of Food Engineering, 102(4), 340–347.

    Article  Google Scholar 

  • Loliger, J. (1991). The use of antioxidants in foods. In O. I. Auroma & B. Halliwell (Eds.), Free radicals and food additives (p. 121). London: Taylor and Francis.

    Google Scholar 

  • López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, I. (2008). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science and Emerging Technology, 9(4), 477–482.

    Article  Google Scholar 

  • Louli, V., Ragoussis, N., & Magoulas, K. (2004). Recovery of phenolic antioxidants from wine industry by-products. Bioresources Technology, 92, 201–208.

    Article  CAS  Google Scholar 

  • Macheix, J., Fleurient, A., & Billot J. (1990). Flavanoids. In: Fruit phenolics. Boca Raton: CRC, 39-80.

  • Murat, M. L., & Dumeau, F. (2005). Recent findings on rosé wine aromas. Part II: optimizing winemaking techniques. Aust. NZ Grapegrower Winemaker, 499, 49-52–54-55.

    Google Scholar 

  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1219.

    Article  Google Scholar 

  • Praporscic, I. (2005). Influence du traitement combiné par champ électriques pulsés et chauffage modéré sur les propriétés physiques et sur le comportement au pressage de produits végétaux. Thesis, Université de Technologie de Compiègne, France.

  • Praporscic, I., Lebovka, N., Vorobiev, E., & Mietton-Peuchot, M. (2007). Pulsed electric field enhanced expression and juice quality of white grapes. Separation and Purification Technology, 52, 520–526.

    Article  CAS  Google Scholar 

  • Puértolas, E., Hernandez-Orte, P., Sladana, G., Alvarez, I., & Raso, J. (2010). Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International, 43(3), 761–766.

    Article  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010). Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology, 21(5), 247–255.

    Article  Google Scholar 

  • Puértolas, E., Saldaña, G., Condón, S., Álvarez, I., & Raso, J. (2010). Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chemistry, 119(3), 1063–1070.

    Article  Google Scholar 

  • Puertolas, E., Saldana, G., Alvarez, I., & Raso, J. (2011). Experimental design approach for the evaluation of rose wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chemistry, 126, 1482–1487.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2004). Traité d’oenologie - 2. Chimie du vin—stabilisation et traitements. Dunod, Paris.

  • Sastry, S. K. (2005). Advances in ohmic heating and moderate electric field (MEF) processing. In G. V. Barbosa-Cànovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies. CRC: Boca Raton.

    Google Scholar 

  • Sastry, S. K. (2008). Ohmic heating and moderate electric fields processing. Food Science and Technology International, 14, 419.

    Article  Google Scholar 

  • Sastry, S., & Barach, J. (2000). Ohmic and inductive heating. Journal of Food Science, 65(4), 42–46.

    Article  Google Scholar 

  • Shynkaryk, M., Ji, T., Alvarez, V. B., & Sastry, S. K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), 493–500.

    Article  Google Scholar 

  • Singleton, V. L. (1982). Grapes and wine phenolics: Background and prospects. In A. D. Webb (Ed.), Proceedings of the University of California, Davis, wine grape centennial symposium. Davis: Department of Viticulture and Enology, University of California.

    Google Scholar 

  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.

    CAS  Google Scholar 

  • Vorobiev E & Lebovka N (eds) (2008) Electro technologies for extraction from food plants and biomaterials. New York: Springer, 272 p. 157 illus., Hardcover.

  • Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology Biochemistry and Pharmacology, 105, 175–256.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the society KSARA (Lebanon) for financial support. Thanks to Dr. Nadia Boussetta for her help on the realization of the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada El Darra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Darra, N., Grimi, N., Vorobiev, E. et al. Extraction of Polyphenols from Red Grape Pomace Assisted by Pulsed Ohmic Heating. Food Bioprocess Technol 6, 1281–1289 (2013). https://doi.org/10.1007/s11947-012-0869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0869-7

Keywords

Navigation