Food and Bioprocess Technology

, Volume 6, Issue 8, pp 2118–2127 | Cite as

Enhancement of Functional Properties of Wami Tilapia (Oreochromis urolepis hornorum) Skin Gelatin at Different pH Values

  • Alexandre da Trindade Alfaro
  • Gustavo Graciano Fonseca
  • Carlos Prentice-Hernández
Original Paper


The effects of several agents in two different concentrations and pH values (5.0 and 8.0) on the functional properties of tilapia (Oreochromis urolepis hornorum) skin gelatin were evaluated and compared using a control tilapia skin gelatin and a commercial mammalian gelatin. The addition of the agents (sucrose 4 % and 8 % (w/v), glycerol 5 % and 10 % (v/v), NaCl 0.3 and 0.8 mol/L, MgCl2 0.3 and 0.8 mol/L, MgSO4 0.3 and 0.8 mol/L, KCl 0.3 and 0.8 mol/L, and transglutaminase 10 and 15 mg/mL) slightly increased the turbidity. There were different ratios of rheological properties depending on the agent, concentration, and pH. The addition of all agents increased the viscosity of the gelatin solution, mainly at pH 5.0. The addition of glycerol (10 % (v/v)) raised viscosity up to 7.45 cP. The setting time was prolonged by incorporating the agents. The gelatin samples with the addition of MgSO4 0.8 mol/L showed higher gel strength than the mammalian gelatin, exhibiting values of 298 and 295gf at pH 5.0 and 8.0, respectively.


Tilapia Skin Gelatin Agents Functional properties 


  1. Aewsiri, T., Benjakul, S., Visessanguan, W., Encarnacion, A. B., Wierenga, P. A., & Gruppen, H. (2011). Enhancement of emulsifying properties of cuttlefish skin gelatin by modification with hydroxysuccinimide esters of fatty acids. Food and Bioprocess Technology. doi:10.1007/s11947-011-0553-3.
  2. Alfaro, A. T., Fonseca, G. G., Costa, C. S., & Prentice, C. (2009). Effect of extraction parameters on the properties of gelatin from King weakfish (Macrodon ancylodon) bones. Food Science and Technology International, 15(6), 553–562.CrossRefGoogle Scholar
  3. AOAC. (2000). Official methods of the Association of Official Agricultural Chemist’s International. Gaithersburg: AOAC International.Google Scholar
  4. Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, 43(4), 726–745.CrossRefGoogle Scholar
  5. Arvanitoyannis, I. S., & Ladas, D. (2008). Meat waste treatment methods and potential uses. International Journal of Food Science and Technology, 43(3), 543–559.CrossRefGoogle Scholar
  6. Asghar, A., & Henrickson, R. L. (1982). Chemical, biochemical, functional, and nutritional characteristics of collagen food systems. In C. O. Chichester, E. M. Mrata, & B. S. Schweigert (Eds.), Advances in food research (pp. 232–272). London: Academic Press.Google Scholar
  7. Boran, G., Mulvaney, S. J., & Regenstein, J. M. (2010). Rheological properties of gelatin from silver carp skin compared to commercially available gelatins from different sources. Journal of Food Science, 75(8), E565–E571.CrossRefGoogle Scholar
  8. BSI. (1975). Methods for sampling and testing gelatin (physical and chemical methods). London: British Standards Institution.Google Scholar
  9. Bueno, C. M., Alvim, I. D., Koberstein, T. C. R. D., Portella, M. C., & Grosso, C. (2011). Production of tilapia skin gelatin and its use in the production of micro-particles containing salmon oil. Brazilian Journal of Food Technology, 14(1), 65–73.CrossRefGoogle Scholar
  10. Chiou, B., Avena-Bustillos, R. J., Shey, J., Yee, E., Bechtel, P. J., Imam, S. H., Glenn, G. M., & Orts, W. J. (2006). Rheological and mechanical properties of cross-linked fish gelatins. Polymer, 47(18), 6379–6386.CrossRefGoogle Scholar
  11. Cho, S. M., Gu, Y. S., & Kim, S. B. (2004). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2), 221–229.CrossRefGoogle Scholar
  12. Choi, S. S., & Regenstein, J. M. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2), 194–199.CrossRefGoogle Scholar
  13. Cole, C. G. B. (2011). Gelatin food science. Available at: Accessed 26 April 2011.
  14. Cole, C. G. B., & Roberts, J. J. (1996). Changes in the molecular composition of gelatin due to the manufacturing process and animal age, as shown by electrophoresis. Journal of the Society of the Leather Technologists and Chemists, 80(5), 136–141.Google Scholar
  15. Duan, R., Zhang, J., Xing, F., Konno, K., & Xu, B. (2011). Study on the properties of gelatins from skin of carp (Cyprinus carpio) caught in winter and summer season. Food Hydrocolloids, 25, 368–373.CrossRefGoogle Scholar
  16. Elysée-Collen, B., & Lencki, R. W. (1996). Effect of ethanol, ammonium sulfate, and temperature on the phase behaviour of type B gelatin. Journal of Agriculture and Food Chemistry, 44(7), 1651–1657.CrossRefGoogle Scholar
  17. Fernández-Díaz, M. D., Montero, P., & Gómez-Guillén, M. C. (2001). Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the coenhancers magnesium sulphate, glycerol and transglutaminase. Food Chemistry, 74(2), 161–167.CrossRefGoogle Scholar
  18. Fernández-Díaz, M. D., Montero, P., & Gómez-Guillén, M. C. (2003). Effect of freezing fish skins on molecular and rheological properties of extracted gelatin. Food Hydrocolloids, 17(3), 281–286.CrossRefGoogle Scholar
  19. Gildberg, A., Arnesen, J. A., & Carlehög, M. (2002). Utilisation of cod backbone by biochemical fractionation. Process Biochemistry, 38(4), 475–480.CrossRefGoogle Scholar
  20. Gilsenan, P. M., & Ross-Murphy, S. B. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3), 191–195.CrossRefGoogle Scholar
  21. Gómez-Guillén, M. C., Turnay, J., Fernández-Díaz, M. D., Ulmo, N., Lizarbe, M. A., & Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1), 25–34.CrossRefGoogle Scholar
  22. Gudmundsson, M. (2002). Rheological properties of fish gelatin. Journal of Food Science, 67(6), 2172–2176.CrossRefGoogle Scholar
  23. Gudmundsson, M., & Hafsteinsson, H. (1997). Gelatin from cod skins as affected by chemical treatments. Journal of Food Science, 62(1), 37–39.CrossRefGoogle Scholar
  24. Harrington, W. F., & von Hippel, P. H. (1962). The structure of collagen and gelatin. In C. B. Anfinsen Jr., M. L. Anson, K. Bailey, & J. T. Edsall (Eds.), Advances in protein chemistry (pp. 1–138). London: Elsevier.Google Scholar
  25. Haug, I. J., Draget, K. I., & Smidsrød, O. (2004). Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids, 18(2), 203–213.CrossRefGoogle Scholar
  26. Jamilah, B., & Harvinder, K. G. (2002). Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 77, 81–84.CrossRefGoogle Scholar
  27. Johns, P., & Courts, A. (1977). Relationship between collagen and gelatin. In A. G. Ward & A. Courts (Eds.), The science and technology of gelatin (pp. 138–177). London: Academic Press.Google Scholar
  28. Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2006). Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocolloids, 20, 1216–1222.CrossRefGoogle Scholar
  29. Jongjareonrak, A., Rawdkuen, S., Chaijan, M., Benjakul, S., Osako, K., & Tanaka, M. (2010). Chemical compositions and characterisation of skin gelatin from farmed giant catfish (Pangasianodon gigas). LWT- Food Science and Technology, 43, 161–165.CrossRefGoogle Scholar
  30. Kunz, W., Lo Nostro, P., & Ninham, B. W. (2004). The present state of affairs with Hofmeister effects. Current Opinion in Colloid and Interface Science, 9, 1–18.CrossRefGoogle Scholar
  31. Ledward, D. A. (1986). Gelation of gelatin. In J. R. Mitchell & D. A. Ledward (Eds.), Functional properties of food macromolecules (pp. 171–201). London: Elsevier.Google Scholar
  32. Leuenberger, B. H. (1991). Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocolloids, 5(4), 353–361.CrossRefGoogle Scholar
  33. Mohtar, N. F., Perera, C., & Quek, S. (2010). Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS-PAGE. Food Chemistry, 122, 307–313.CrossRefGoogle Scholar
  34. Montero, P., Fernández-Díaz, M. D., & Gómez-Guillén, M. C. (2002). Characterization of gelatin gels induced by high pressure. Food Hydrocolloids, 16(3), 197–205.CrossRefGoogle Scholar
  35. Naftalian, R. J., & Symons, M. C. R. (1974). The mechanism of sugar-dependent stabilization of gelatin gels. Biochimica et Biophysica Acta, 352(1), 173–176.CrossRefGoogle Scholar
  36. Nagl, S., Tichy, H., Mayer, W. E., Samonte, I. E., Mcandrew, B. J., & Klein, J. (2001). Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 20(3), 361–374.CrossRefGoogle Scholar
  37. Norland, R. E. (1990). Fish gelatin. In M. N. Voight & J. K. Botta (Eds.), Advances in fisheries technology and biotechnology for increased profitability (pp. 325–333). Lancaster: Technomic Publishing Co.Google Scholar
  38. Piotrowska, B., Sztuka, K., Kolodziejska, I. L., & Dobrosielska, E. (2008). Influence of transglutaminase or 1-ethyl-3-(3- imethylaminopropyl) carbodiimide (EDC) on the properties of fish-skin gelatin films. Food Hydrocolloids, 22(7), 1362–1371.CrossRefGoogle Scholar
  39. Sai-Ut, S., Jongjareonrak, A., & Rawdkuen, S. (2011). Re-extraction, recovery, and characteristics of skin gelatin from farmed giant catfish. Food and Bioprocess Technology. doi:10.1007/s11947-010-0408-3.
  40. Sarabia, A. I., Gómez-Guillén, M. C., & Montero, P. (2000). The effect of added salt on the viscoelastic properties of fish skin gelatin. Food Chemistry, 70(1), 71–76.CrossRefGoogle Scholar
  41. Zhang, Y., & Cremer, P. S. (2006). Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology, 10, 658–663.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alexandre da Trindade Alfaro
    • 1
    • 4
  • Gustavo Graciano Fonseca
    • 2
  • Carlos Prentice-Hernández
    • 3
  1. 1.Federal Technological University of Paraná (UTFPR)Francisco BeltrãoBrazil
  2. 2.Laboratory of Bioengineering, Faculty of EngineeringFederal University of Grande Dourados (UFGD)DouradosBrazil
  3. 3.Laboratory of Food Technology, School of Chemistry and FoodFederal University of Rio Grande (FURG)Rio GrandeBrazil
  4. 4.Faculdade de Engenharia, Laboratório de Tecnologia de AlimentosUniversidade Tecnológica Federal do Paraná (UTFPR)Francisco BeltrãoBrasil

Personalised recommendations