Skip to main content

Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling

Abstract

Solid lipid nanoparticles and nanostructure lipid carriers were used to entrap hesperetin and broaden confined knowledge of application of nanocarriers as the functional ingredients in food sectors. The produced nanocarriers using a high mechanical shear method were subjected to size and zeta potential analysis. The developed nanosize carriers had the encapsulation efficiency ranging from 39.90 to 63.08 %. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy were also employed to study thermal behavior, crystalline state, and chemical structure. The release behavior of hesperetin in simulated gastrointestinal conditions was investigated and kinetically modeled. The modeling results indicated that the release phenomenon is mostly governed by combination of Fickian and dissolution mechanisms. Stability of the nanocarriers, as analyzed for up to 30 days, at 6 and 25 °C in aqueous suspension, showed no detectable hesperetin leakage. Cryoprotectant effect of different compounds (i.e., glucose, sorbitol, glycerin, lactose, and sucrose) was also examined. Finally, the potential capability of nanocarriers for food fortification was studied using milk as a model food. The fortified milk samples were subjected to sensory analysis and results betokened that the developed nanocarriers did not show any significant difference with blank milk sample and could well mask the bitter taste, after taste, and obviate poor solubility of hesperetin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Acosta, E. (2006). Testing the effectiveness of nutrient delivery systems. In N. Garti (Ed.), Delivery and controlled release of bioactives in foods and nutraceuticals. Boca Raton: CRC.

    Google Scholar 

  2. Borradaile, N., Carroll, K., & Kurowska, E. (1999). Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids, 34(6), 591–598.

    Article  CAS  Google Scholar 

  3. Chakraborty, M., Dasgupta, S., Soundrapandian, C., Chakraborty, J., Ghosh, S., Mitra, M. K., & Basu, D. (2011). Methotrexate intercalated ZnAl-layered double hydroxide. Journal of Solid State Chemistry, 184(9), 2439–2445.

    Article  CAS  Google Scholar 

  4. Crowe, L. M., Womersley, C., Crowe, J. H., Reid, D., Appel, L., & Rudolph, A. (1986). Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochimica et Biophysica Acta (BBA) - Biomembranes, 861, 131–140.

    CAS  Google Scholar 

  5. Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851–874.

    Article  CAS  Google Scholar 

  6. Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23, 13–27.

    Article  CAS  Google Scholar 

  7. Ficarra, R., Tommasini, S., Raneri, D., Calabrò, M. L., Di Bella, M. R., Rustichelli, C., Gamberini, M. C., & Ficarra, P. (2002). Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. Journal of Pharmaceutical and Biomedical Analysis, 29(6), 1005–1014.

    Article  CAS  Google Scholar 

  8. Freitas, C., & Muller, R. H. (1998). Spray-drying of solid lipid nanoparticles (SLNTM). European Journal of Pharmaceutics and Biopharmaceutics, 46(2), 145–151.

    Article  CAS  Google Scholar 

  9. Frost, M. B., Dijksterhuis, G., & Martens, M. (2001). Sensory perception of fat in milk. Food Quality and Preference, 12(5–7), 327–336.

    Article  Google Scholar 

  10. Gabbott, P. (2008). A practical introduction to differential scanning calorimetry. In P. Gabbott (Ed.), Principles and applications of thermal analysis (pp. 1–50). Oxford: Blackwell.

    Chapter  Google Scholar 

  11. Hentschel, A., Gramdorf, S., Müller, R. H., & Kurz, T. (2008). β-Carotene-loaded nanostructured lipid carriers. Journal of Food Science, 73(2), N1–N6.

    Article  CAS  Google Scholar 

  12. Higuchi, T. (1963). Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52, 1145–1149.

    Article  CAS  Google Scholar 

  13. Horcajada, M. N., & Coxam, V. (2004). Hesperidin, a citrus flavanone, improves bone acquisition and prevents skeletal impairment in rats in nutritional aspects of osteoporosis. New York: Elsevier.

    Google Scholar 

  14. Li, F., Jin, L., Han, J., Wei, M., & Li, C. (2009). Synthesis and controlled release properties of prednisone intercalated Mg–Al layered double hydroxide composite. Industrial and Engineering Chemistry Research, 48(12), 5590–5597.

    Article  CAS  Google Scholar 

  15. Luykx, D. M. A. M., Peters, R. J. B., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231–8247.

    Article  CAS  Google Scholar 

  16. Miyagi, Y., Om, A. S., Chee, K. M., & Bennink, M. R. (2000). Inhibition of azoxymethane-induced colon cancer by orange juice. Nutrition and Cancer, 36(2), 224–229.

    Article  CAS  Google Scholar 

  17. Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, S131–S155.

    Article  Google Scholar 

  18. Nash, R. A., & Haeger, B. E. (1966). Zeta potential in the development of pharmaceutical suspensions. Journal of Pharmaceutical Sciences, 55(8), 829–837.

    Article  CAS  Google Scholar 

  19. Pardeike, J., Hommoss, A., & Muller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366(1–2), 170–184.

    Article  CAS  Google Scholar 

  20. Sansone, F., Rossi, A., Del Gaudio, P., De Simone, F., Aquino, R., & Lauro, M. (2009). Hesperidin gastroresistant microparticles by spray-drying: preparation, characterization, and dissolution profiles. AAPS PharmSciTech, 10(2), 391–401.

    Article  CAS  Google Scholar 

  21. Schwarz, C., & Mehnert, W. (1997). Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, 157(2), 171–179.

    Article  CAS  Google Scholar 

  22. Sezer, A. D., Kazak, H., Oner, E. T., & Akbuga, J. I. (2011). Levan-based nanocarrier system for peptide and protein drug delivery: optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydrate Polymers, 84(1), 358–363.

    Article  CAS  Google Scholar 

  23. So, F. V., Guthrie, N., Chambers, A. F., Moussa, M., & Carroll, K. K. (1996). Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutrition and Cancer, 26(2), 167–181.

    Article  CAS  Google Scholar 

  24. Tanaka, T., Makita, H., Kawabata, K., Mori, H., Kakumoto, M., Satoh, K., Hara, A., Sumida, T., & Ogawa, H. (1997). Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis, 18(5), 957–965.

    Article  CAS  Google Scholar 

  25. Tomás-Barberán, F. A., & Clifford, M. N. (2000). Flavanones, chalcones and dihydrochalcones—nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1073–1080.

    Article  Google Scholar 

  26. Tommasini, S., Calabrò, M. L., Stancanelli, R., Donato, P., Costa, C., Catania, S., Villari, V., Ficarra, P., & Ficarra, R. (2005). The inclusion complexes of hesperetin and its 7-rhamnoglucoside with (2-hydroxypropyl)-[beta]-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 39(3–4), 572–580.

    Article  CAS  Google Scholar 

  27. Varshosaz, J., Ghaffari, S., Khoshayand, M. R., Atyabi, F., Azarmi, S., & Kobarfard, F. (2010). Development and optimization of solid lipid nanoparticles of amikacin by central composite design. Journal of Liposome Research, 20(2), 97–104.

    Article  CAS  Google Scholar 

  28. Varshosaz, J., Minayian, M., & Moazen, E. (2010). Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. Journal of Liposome Research, 20(2), 115–123.

    Article  CAS  Google Scholar 

  29. Venkateswarlu, V., & Manjunath, K. (2004). Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release, 95(3), 627–638.

    Article  CAS  Google Scholar 

  30. Weiss, J., Decker, E. A., McClements, D. J., Kristbergsson, K., Helgason, T., & Awad, T. (2008). Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics, 3, 146–154.

    Article  Google Scholar 

  31. Westesen, K., Siekmann, B., & Koch, M. H. J. (1993). Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. International Journal of Pharmaceutical, 93, 189–199.

    Article  CAS  Google Scholar 

  32. Yang, S., & Washington, C. (2006). Drug release from microparticulate systems. In S. Benita (Ed.), Microencapsulation: methods and industrial applications. New York: Taylor & Francis Grou0p.

    Google Scholar 

  33. zur Muhlen, A., Schwarz, C., & Mehnert, W. (1998). Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 45(2), 149–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Iran National Science Foundation (INSF) for financial support under grant number of 89004288.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milad Fathi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fathi, M., Varshosaz, J., Mohebbi, M. et al. Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technol 6, 1464–1475 (2013). https://doi.org/10.1007/s11947-012-0845-2

Download citation

Keywords

  • Hesperetin
  • Nanostructure lipid carriers
  • Solid lipid nanocarriers