Skip to main content
Log in

Probiotic Milk Supplementation with Pea Flour: Microbial and Physical Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of skim milk probiotic (L. rhamnosus AD200) fermented beverage supplementation with 1–3 % (w/v) pea flour (PF) or skim milk powder (SM) on acid production, microbial growth, physical properties (pH, syneresis, and color), and rheological properties (dynamic oscillation temperature sweep test at 4–50 °C) after production and during 28-day storage was studied. Acid production and microbial populations (CFU) were enhanced after production and 28-day storage especially for 3 % PF-supplemented sample. The average pH in all samples decreased from 4.5 to 4.04 over 28 days of storage. Syneresis in 1–3 % PF-supplemented probiotic was significantly lower than all other samples. PF supplementation slightly changed the color by increasing yellowness in the final product. PF-supplemented (1–3 %) probiotic fermented milk showed higher storage (G') and loss (G'') moduli in comparison with samples supplemented with 1–3 % SM and the non-supplemented control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adebooye, O. C., & Singh, V. (2008). Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Innovative Food Science and Emerging Technologies, 9(1), 92–100.

    Article  CAS  Google Scholar 

  • Badran, I. I., & Reichart, O. (1994). Comparative study on some fermentation properties of Streptococcus thermophilus and Lactobacillus acidophilus in milk and modified milk media. Part II. Effect of the increased solid not fat on the fermentation properties of the mixed culture. Acta Alimentaria, 23, 133–146.

    CAS  Google Scholar 

  • Champagne, C. P., & Gardner, N. J. (2008). The growth and recovery of an exopolysaccharide-producing Lactobacillus rhamnosus culture on growth media containing apple juice or molasses. Journal of General and Applied Microbiology, 54, 237–241.

    Article  CAS  Google Scholar 

  • Champagne, C. P., Tompkins, T. A., Buckley, N. D., & Green-Johnson, J. M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and vitamin content of a fermented soy beverage. Food Microbiology, 27, 968–972.

    Article  CAS  Google Scholar 

  • Damin, M. R., Minowa, E., Alcântara, M. R., & Oliveira, M. N. (2006). Chemical and viability changes during fermentation and cold storage of fermented milk manufactured using yogurt and probiotic bacteria, IUFoST. OI: 10.1051/IUFoST:20060635,, Article available at http://iufost.edpsciences.org.

  • Dave, R. I., & Shah, N. P. (1997). Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal, 7, 435–443.

    Article  CAS  Google Scholar 

  • De Brabandere, A., & De Baerdemaeker, J. G. (1999). Effects of process conditions on the pH development during yogurt fermentation. Journal of Food Engineering, 41, 221–227.

    Article  Google Scholar 

  • Duggan, E., & Waghorne, E. (2001). Effect of addition of chitosan on rheological properties of acidified milk gel. Progress in Colloid and Polymer Science, 118, 196–201.

    Article  CAS  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2010). Scientific opinion on the substantiation of health claims related to yoghurt cultures and improving lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 8(10), 1763.

    Google Scholar 

  • CFIA (Canadian Food Inspection Agency) (2009). Probiotic claims. Chapter 8, Section 8.7 ; Available at http://www.inspection.gc.ca/english/fssa/labeti/guide/ch8ae.shtml.

  • Gaudreau, H., Champagne, C. P., & Jelen, P. (2005). The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk. Enzyme and Microbial Technology, 36, 83–90.

    Article  CAS  Google Scholar 

  • Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional foods and nondairy probiotic food development: trends, concepts, and products. Comprehensive Reviews In Food Science and Food Safety, 9(3), 292–302.

    Article  CAS  Google Scholar 

  • Hekmat, S., Soltani, H., & Reid, G. (2009). Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as functional food. Innovative Food Science and Emerging Technologies, 10, 293–296.

    Article  CAS  Google Scholar 

  • Kailasapathy, K., Harmstorf, I., & Phillips, M. (2008). Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT- Food Science and Technology, 41(7), 1317–1322.

    Article  CAS  Google Scholar 

  • Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterisation of semi-solid foods. Food Research International, 39(3), 265–276.

    Article  CAS  Google Scholar 

  • Lucey, A. J. (2001). The relationship between rheological parameters and whey separation in milk gel. Food Hydrocolloids, 15, 603–608.

    Article  CAS  Google Scholar 

  • Lucey, J. P., Munro, P. A., & Singh, H. (1998). Whey separation in acid skim milk gels made with Glucono-δ-Lacton: effects of heat treatment and gelation temperature. Journal of Texture Studies, 29, 413–426.

    Article  Google Scholar 

  • Ozer, B. H., Robinson, R. K., Grandison, A. S., & Bell, A. E. (1997). Comparison of techniques for measuring the rheological properties of labneh (concentrated yogurt). International Journal of Dairy Technology, 50(4), 129–133.

    Article  Google Scholar 

  • Peng, Y., Serra, M., Horne, D. S., & Lucey, J. A. (2009). Effect of fortification with various types of milk protein on the rheological properties and permeability of nonfat set yogurt. Journal of Food Science, 74(9), C666–C673.

    Article  CAS  Google Scholar 

  • Playne, M. J., Bennet, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. The Australian Journal of Dairy Technology, 58, 242–264.

    CAS  Google Scholar 

  • Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43, 1–7.

    Article  CAS  Google Scholar 

  • Remeuf, F., Mohammed, S., Sodini, I., & Tissier, J. P. (2003). Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. International Dairy Journal, 13(9), 773–782.

    Article  CAS  Google Scholar 

  • Sanz, T., Salvador, A., Jimenez, A., & Fiszman, S. A. (2008). Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, color, and sensory acceptance. European Food Research and Technology, 227, 1515–1521.

    Article  CAS  Google Scholar 

  • Seo, M. H., Lee, V., Chang, Y. H., & Kwak, H. S. (2009). Physicochemical, microbial, and sensory properties of yogurt supplemented with nano-powdered chitosan during storage. Journal of Dairy Science, 92(12), 5907–5916.

    Article  CAS  Google Scholar 

  • Shah, N. P. (2000). Probiotic bacteria: selective enumeration and survival in dairy foods. Journal of Dairy Science, 83(4), 894–907.

    Article  CAS  Google Scholar 

  • Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277.

    Article  Google Scholar 

  • Sodini, I., Lucas, A., Tissier, J. P., & Corrieu, G. (2005). Physical properties and microstructure of yogurts supplemented with milk protein hydrolysates. Internationalournal Dairy Journal, 15(1), 29–35.

    Article  CAS  Google Scholar 

  • Tamime, A. Y., & Robinson, R. K. (1999). Yogurt: science and technology, (third edition, 2007). Cambridge, UK: Woodhead Publishing Ltd. And CRC Press LLC.

    Google Scholar 

  • Wang, N., & Daun, J. K. (2004). The chemical composition and nutritive value of Canadian pulses. Canadian Grain Commission Publication, Grain Research Laboratory, 12-13, Available at: http://www.pulsecanada.com/uploads/1e/fd/1efd063dbc685ffa5040f927cdb94f9b/The-Chemical-Composition-and-Nutritive-Value-of-Canadian-Pulses.pdf.

  • Zare, F., Champagne, C. P., Simpson, B. K., Orsat, V., & Boye, J. I. (2012). Growth of starter microorganisms and acidification trend in yogurt and probiotic media supplemented with pulse ingredients. LWT - Food Science and Technology, 45, 155–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported with funds from Pulse Canada and Agriculture and Agri-Food Canada's Agricultural Bioproducts Innovation Program. Gratitude is expressed to Yves Raymond for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Boye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare, F., Boye, J.I., Champagne, C.P. et al. Probiotic Milk Supplementation with Pea Flour: Microbial and Physical Properties. Food Bioprocess Technol 6, 1321–1331 (2013). https://doi.org/10.1007/s11947-012-0828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0828-3

Keywords

Navigation