Skip to main content

Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins

Abstract

The aim of this work was to investigate the effect of chemical oxidation on the emulsifying properties of myofibrillar proteins. Myofibrillar proteins were oxidized by a hydroxyl radical generating system (Fenton reaction). Structural changes of oxidized or non-oxidized myofibrillar proteins were determined using surface hydrophobicity (H0) and Fourier transform infrared (FTIR) spectroscopy. The results suggested that H0 increased (p < 0.05) after treatment with oxidizing agent. Result from FTIR suggested that protein aggregation occurred and there was an increase in β-sheet structure accompanied by a decrease in turns, alpha helix, and random structures with the increase of oxidizing agent. Changes in zeta potential of the test emulsions suggested that protein oxidation could alter the electric charge of myofibrillar proteins. The analysis of the emulsions showed that protein oxidation had a negative effect on the emulsifying properties of myofibrillar proteins due to changes in electric charge, surface active properties, and protein molecular flexibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Barrientos, R. G., Chabela, M. L. P., Montejano, J. G., & Legarreta, I. G. (2006). Changes in pork and shark (Rhizopriondon terraenovae) protein emulsions due to exogenous and endogenous proteolytic activity. Food Research International, 39(9), 1012–1022.

    Article  Google Scholar 

  • Buchner, G. S., Murphy, R. D., Buchete, N. V., & Kubelka, J. (2011). Dynamics of protein folding: Probing the kinetic network of folding–unfolding transitions with experiment and theory. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1814(8), 1001–1020.

    Article  CAS  Google Scholar 

  • Byler, D. M., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25(3), 469–487.

    Article  CAS  Google Scholar 

  • Chang, S. K. C. (2010). Protein analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 133–146). New York: Springer.

    Chapter  Google Scholar 

  • Chelh, I., Gatellier, P., & Santé-Lhoutellier, V. (2006). Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Science, 74(4), 681–684.

    Article  CAS  Google Scholar 

  • Chen, L., Chen, J., Ren, J., & Zhao, M. (2010). Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloids, 25(5), 887–897.

    Article  Google Scholar 

  • Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59, 2600–2609.

    Article  CAS  Google Scholar 

  • Davies, K. (1987). Protein damage and degradation by oxygen radicals. I. General aspects. Journal of Biological Chemistry, 262(20), 9895–9901.

    CAS  Google Scholar 

  • Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259–279.

    Article  Google Scholar 

  • Estévez, M., Ventanas, S., & Cava, R. (2007). Oxidation of lipids and proteins in frankfurters with different fatty acid compositions and tocopherol and phenolic contents. Food Chemistry, 100(1), 55–63.

    Article  Google Scholar 

  • Estévez, M., Kylli, P., Puolanne, E., Kivikari, R., & Heinonen, M. (2008). Fluorescence spectroscopy as a novel approach for the assessment of myofibrillar protein oxidation in oil-in-water emulsions. Meat Science, 80(4), 1290–1296.

    Article  Google Scholar 

  • Flores, M., Barat, J. M., Aristoy, M., Peris, M. M., Grau, R., & Toldra, F. (2006). Accelerated processing of dry-cured ham. Part 2. Influence of brine thawing/salting operation on proteolysis and sensory acceptability. Meat Science, 72(4), 766–772.

    Article  CAS  Google Scholar 

  • Gordon, A., & Barbut, S. (1992). Mechanisms of meat batter stabilization: A review. Critical Reviews in Food Science and Nutrition, 32(4), 299–332.

    Article  CAS  Google Scholar 

  • Grune, T., Jung, T., Merker, K., & Davies, K. J. A. (2004). Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. The International Journal of Biochemistry & Cell Biology, 36(12), 2519–2530.

    Article  CAS  Google Scholar 

  • Hu, X., Ren, J., Zhao, M., Cui, C., & He, P. (2011). Emulsifying properties of the transglutaminase-treated crosslinked product between peanut protein and fish (Decapterus maruadsi) protein hydrolysates. Journal of the Science of Food and Agriculture, 91(3), 578–585.

    Article  CAS  Google Scholar 

  • Kato, A., & Yutani, K. (1988). Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase α-subunits substituted at the same position. Protein Engineering, 2(2), 153–156.

    Article  CAS  Google Scholar 

  • Kato, A., Tanimoto, S., Muraki, Y., Kobayashi, K., & Kumagai, I. (1992). Structural and functional properties of hen egg-white lysozyme deamidated by protein engineering. Bioscience, Biotechnology, and Biochemistry, 56(9), 1424–1428.

    Article  CAS  Google Scholar 

  • Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559.

    Article  CAS  Google Scholar 

  • Ladikos, D., & Lougovois, V. (1990). Lipid oxidation in muscle foods: A review. Food Chemistry, 35(4), 295–314.

    Article  CAS  Google Scholar 

  • Lefèvre, T., & Subirade, M. (1999). Structural and interaction properties of β-lactoglobulin as studied by FTIR spectroscopy. International Journal of Food Science and Technology, 34(5–6), 419–428.

    Google Scholar 

  • Lefèvre, T., & Subirade, M. (2001). Molecular structure and interaction of biopolymers as viewed by Fourier transform infrared spectroscopy: Model studies on [beta]-lactoglobulin. Food Hydrocolloids, 15(4–6), 365–376.

    Article  Google Scholar 

  • Lorenzen, P. C., Schlimme, E., & Roos, N. (1998). Crosslinking of sodium caseinate by a microbial transglutaminase. Nahrung-Food, 42(3–4), 151–154.

    Article  CAS  Google Scholar 

  • Lund, M. N., Heinonen, M., Baron, C. P., & Estévez, M. (2011). Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research, 55(1), 83–95.

    Article  CAS  Google Scholar 

  • Martinaud, A., Mercier, Y., Marinova, P., Tassy, C., Gatellier, P., & Renerre, M. (1997). Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. Journal of Agricultural and Food Chemistry, 45(7), 2481–2487.

    Article  CAS  Google Scholar 

  • Matsuura, H., Hasegawa, K., & Miyazawa, T. (1986). Infrared and Raman spectra of N-acetyl-l-amino acid methylamides with aromatic side groups. Spectrochimica Acta Part A: Molecular Spectroscopy, 42(10), 1181–1192.

    Article  Google Scholar 

  • McClements, D. J. (2009). Biopolymers in Food Emulsions. In S. Kasapis, I. T. Norton, & J. B. Ubbink (Eds.), Modern biopolymer science: Bridging the divide between fundamental treatise and industrial application (pp. 129–166). New York: Academic.

    Google Scholar 

  • McDonald, K., & Sun, D.-W. (2001). Effect of evacuation rate on the vacuum cooling process of a cooked beef product. Journal of Food Engineering, 48(3), 195–202. doi:10.1016/S0260-8774(00)00158-8.

    Google Scholar 

  • McDonald, K., Sun, D.-W., & Kenny, T. (2001). The effect of injection level on the quality of a rapid vacuum cooled cooked beef product. Journal of Food Engineering, 47(2), 139–147. doi:10.1016/S0260-8774(00)00110-2.

    Google Scholar 

  • Meng, G. T., & Ma, C. Y. (2001). Fourier-transform infrared spectroscopic study of globulin from Phaseolus angularis (red bean). International Journal of Biological Macromolecules, 29(4–5), 287–294.

    Article  CAS  Google Scholar 

  • Peterson, K. A., Rella, C., Engholm, J., & Schwettman, H. (1999). Ultrafast vibrational dynamics of the myoglobin amide I band. The Journal of Physical Chemistry. B, 103(3), 557–561.

    Article  CAS  Google Scholar 

  • Poon, S., Clarke, A. E., & Schultz, C. J. (2001). Effect of denaturants on the emulsifying activity of proteins. Journal of Agricultural and Food Chemistry, 49(1), 281–286.

    Article  CAS  Google Scholar 

  • Promeyrat, A., Gatellier, P., Lebret, B., Kajak-Siemaszko, K., Aubry, L., & Santé-Lhoutellier, V. (2010). Evaluation of protein aggregation in cooked meat. Food Chemistry, 121(2), 412–417.

    Article  CAS  Google Scholar 

  • Sanchez, C. C., & Patino, J. M. R. (2005). Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution. Food Hydrocolloids, 19(3), 407–416.

    Article  CAS  Google Scholar 

  • Santé-Lhoutellier, V., Aubry, L., & Gatellier, P. (2007). Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry, 55(13), 5343–5348.

    Article  Google Scholar 

  • Stadtman, E. (1993). Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Review of Biochemistry, 62(1), 797–821.

    Article  CAS  Google Scholar 

  • Sun, W., Zhou, F., Zhao, M., Yang, B., & Cui, C. (2011). Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chemistry, 129(2), 472–478.

    Article  CAS  Google Scholar 

  • Xia, X., Kong, B., Xiong, Y., & Ren, Y. (2010). Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen–thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation. Meat Science, 85(3), 481–486.

    Article  CAS  Google Scholar 

  • Xiong, Y. L., Agyare, K. K., & Addo, K. (2008). Hydrolyzed wheat gluten suppresses transglutaminase-mediated gelation but improves emulsification of pork myofibrillar protein. Meat Science, 80(2), 535–544.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Guangdong Province Government (China) for the support through the program of “Leading Talent of Guangdong Province (Da-Wen Sun)”, the Science and Technology Program of Guangdong Province (grant nos. 2009A020101002 and 2010A020104003), and the National Special Funds for Scientific Research from Ministry of Agriculture of China (no. 200903012) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Wen Sun or Mouming Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, W., Zhou, F., Sun, DW. et al. Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins. Food Bioprocess Technol 6, 1703–1712 (2013). https://doi.org/10.1007/s11947-012-0823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0823-8

Keywords

  • Myofibrillar proteins
  • Protein oxidation
  • Emulsions
  • FTIR
  • Hydrophobicity
  • Zeta potential