Food and Bioprocess Technology

, Volume 6, Issue 7, pp 1644–1654

Chemical Composition, Antioxidant Capacity, and Sensory Quality of Pomegranate (Punica granatum L.) Arils and Rind as Affected by Drying Method

  • Ángel Calín-Sánchez
  • Adam Figiel
  • Francisca Hernández
  • Pablo Melgarejo
  • Krzysztof Lech
  • Ángel A. Carbonell-Barrachina
Original Paper

Abstract

The objective of this study was to evaluate the application of: (1) freeze drying, (2) convective drying (50, 60, or 70 °C), (3) vacuum–microwave drying (240, 360, or 480 W), and (4) a combined method of convective pre-drying and vacuum–microwave finish drying in the processing of pomegranate arils and rind. The quality parameters under study included sugars and organic acids, punicalagins and ellagic acid, total polyphenols, total antioxidant activity, and sensory quality. In general, drying led to a reduction in all studied parameters; however, the behavior of arils and rind was different. Vacuum–microwave drying at 240 or 360 W was the best drying treatment for arils, while rind required freeze drying or soft conditions of convective drying (50 °C). Further research is needed to obtain proper results with convective pre-drying and vacuum–microwave finish drying of arils and rind. With proper selection of the drying protocol, high-quality dried arils will be available for consumers; these arils will be characterized by high contents of fructose (25 g 100 g−1), phytic acid (2.2 g 100 g−1), punicalagins (0.57 mg g−1), total polyphenols (1.6 mg eq gallic acid g−1), high antioxidant capacity (0.6 mg eq Trolox g−1), and high intensities of garnet color, sweetness, sourness, and fresh pomegranate aroma. Besides, dried rind with very high contents of active compounds (123 mg g−1 of punicalagins and 108 mg eq gallic acid g−1) and high antioxidant capacity (26 mg eq Trolox g−1) will be also available as functional material.

Keywords

Antioxidant capacity Descriptive sensory analysis Drying kinetics Organic acids Polyphenols Punicalagins 

Nomenclature

db

Dry basis

db

Bulk density (kilograms per cubic meter)

wb

Wet basis

m

Mass (kilograms)

M0

Initial moisture content (kilograms per kilogram dry basis)

Vb

Bulk volume (cubic meters)

ANOVA

Analysis of variance

AOC

Antioxidant capacity

CD

Convective drying

CPD

Convective pre-drying

DSA

Descriptive sensory analysis

dw

Dry weight

EA

Ellagic acid

FD

Freeze drying

HPLC

High-performance liquid chromatography

PC

Punicalagins

PG

Pomegranate

TP

Total polyphenols

VMD

Vacuum–microwave drying

VMFD

Vacuum–microwave finish drying

VWP

Volume of woody portion

References

  1. Andreu-Sevilla, A.-J., Signes-Pastor, A.-J., & Carbonell-Barrachina, A.-A. (2008). La granada y su zumo. Producción, composición y propiedades beneficiosas para la salud. Alimentación Equipos y Tecnología, 234, 36–39.Google Scholar
  2. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.CrossRefGoogle Scholar
  3. Calín-Sánchez, Á., Martínez, J.-J., Vázquez-Araújo, L., Burló, F., Melgarejo, P., & Carbonell-Barrachina, Á.-A. (2011). Volatile composition and sensory quality of Spanish pomegranates (Punica granatum L.). Journal of the Science of Food and Agriculture, 91(3), 586–592.CrossRefGoogle Scholar
  4. Calín-Sánchez, A., Szumny, A., Figiel, A., Jałoszyński, K., Adamski, M., & Carbonell-Barrachina, A.-A. (2011). Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. Journal of Food Engineering, 103(2), 219–227.CrossRefGoogle Scholar
  5. Carbonell-Barrachina A-A, Calín-Sánchez A, Bagatar B, Hernández F, Legua P, Martínez-Font R & Melgarejo P (2012) Potential of Spanish sour-sweet pomegranates (cultivar C25) for juice industry. Food Science and Technology International (in press).Google Scholar
  6. Cheryan, M., & Rackis, J.-J. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, 13(4), 297–335.CrossRefGoogle Scholar
  7. Drouzas, A.-E., & Schubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineering, 28(2), 203–209.CrossRefGoogle Scholar
  8. Durance, T.-D., & Wang, J.-H. (2002). Energy consumption, density, and rehydration rate of vacuum microwave and hot air convection dehydrated tomatoes. Journal of Food Science, 67(6), 2212–2216.CrossRefGoogle Scholar
  9. Espín, J.-C., García-Conesa, M.-T., & Tomás-Barberán, F.-A. (2007). Nutraceuticals: Facts and fiction. Phytochemistry, 68(22–24), 2986–3008.CrossRefGoogle Scholar
  10. Falade, K.-O., & Igbeka, J.-C. (2007). Osmotic dehydration of tropical fruits and vegetables. Food Reviews International, 23(4), 373–405.CrossRefGoogle Scholar
  11. Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 94(1), 98–104.CrossRefGoogle Scholar
  12. Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470.CrossRefGoogle Scholar
  13. Figiel, A., Szumny, A., Gutierrez-Ortiz, A., & Carbonell-Barrachina, A.-A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, 98(2), 240–247.CrossRefGoogle Scholar
  14. García-Alonso, M., De Pascual-Teresa, S., Santos-Buelga, C., & Rivas-Gonzalo, J.-C. (2004). Evaluation of the antioxidant properties of fruits. Food Chemistry, 84(1), 13–18.CrossRefGoogle Scholar
  15. Gil, M.-I., Tomas-Barberán, F.-A., Hess-Pierce, B., Holcroft, D.-M., & Kader, A.-A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581–4589.CrossRefGoogle Scholar
  16. Giri, S.-K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512–521.CrossRefGoogle Scholar
  17. Harbach, A.-P.-R., da Costa, M.-C.-R., Soares, A.-L., Bridi, A.-M., Shimokomaki, M., da Silva, C.-A., & Ida, E.-I. (2007). Dietary corn germ containing phytic acid prevents pork meat lipid oxidation while maintaining normal animal growth performance. Food Chemistry, 100(4), 1630–1633.CrossRefGoogle Scholar
  18. Hernández, F., Melgarejo, P., Tomás-Barberán, F.-A., & Artés, F. (1999). Evolution of juice anthocyanins during ripening of new selected pomegranate (Punica granatum) clones. European Food Research and Technology, 210(1), 39–42.CrossRefGoogle Scholar
  19. Hernández, F., Melgarejo, P., Martínez, J.-J., Martínez, R., & Legua, P. (2011). Fatty acid composition of seed oils from important spanish pomegranate cultivars. Italian Journal of Food Science, 23, 188–193.Google Scholar
  20. Hu, Q-g, Zhang, M., Mujumdar, A.-S., Xiao, G-n, & Jin-cai, S. (2006). Drying of edamames by hot air and vacuum microwave combination. Journal of Food Engineering, 77(4), 977–982.CrossRefGoogle Scholar
  21. Lee, S.-H., Park, H.-J., Chun, H.-K., Cho, S.-Y., Cho, S.-M., & Lillehoj, H.-S. (2006). Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutrition Research, 26, 474–479.CrossRefGoogle Scholar
  22. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260.CrossRefGoogle Scholar
  23. Lin, T.-M., Durance, T.-D., & Scaman, C.-H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117.CrossRefGoogle Scholar
  24. Llorach, R., Tomás-Barberán, F.-A., & Ferreres, F. (2004). Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. Journal of Agricultural and Food Chemistry, 52(16), 5109–5116.CrossRefGoogle Scholar
  25. Lu, J., Ding, K., & Yuan, Q. (2008). Determination of punicalagin isomers in pomegranate husk. Chromatographia, 68, 303–306.CrossRefGoogle Scholar
  26. MARM (Ministerio de Medio Ambiente y Medio Rural y Marino). (2010). Anuario de Estadística. Madrid: MARM.Google Scholar
  27. Melgarejo, P. (2010) El granado, su problemática y usos. In: I Jornadas nacionales sobre el granado, 7–27 October 2010, Elche, Spain (CD-ROM)Google Scholar
  28. Melgarejo, P., & Salazar, D.-M. (2003). Tratado de Fruticultura para Zonas Áridas y Semiáridas; Ed. Madrid: Mundi-Prensa.Google Scholar
  29. Melgarejo, P., Salazar, D.-M., & Artés, F. (2000). Organic acids and sugars composition of harvested pomegranate fruits. European Food Research and Technology, 211(3), 185–190.CrossRefGoogle Scholar
  30. Melgarejo, P., Martínez, R., Hernández, F., Martínez, J-J & Legua, P. (2011) Anthocyanin content and colour development of pomegranate jam. Food and Bioproducts and Processing, 89(4), 477–481.Google Scholar
  31. Mena, P., García-Viguera, C., Navarro-Rico, J., Moreno, D.-A., Bartual, J., Saura, D., & Martí, N. (2011). Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. Journal of the Science of Food and Agriculture, 91(10), 1893–1906.CrossRefGoogle Scholar
  32. Men'shutina, N.-V., Gordienko, M.-G., Voinovskii, A.-A., & Kudra, T. (2005). Dynamic criteria for evaluating the energy consumption efficiency of drying equipment. Theorical Foundations of Chemical Engineering, 39(2), 158–162.CrossRefGoogle Scholar
  33. Mota, C.-L., Luciano, C., Dias, A., Barroca, M.-J., & Guiné, R.-P.-F. (2010). Convective drying of onion: Kinetics and nutritional evaluation. Food and Bioproducts and Processing., 88(2–3), 115–123.CrossRefGoogle Scholar
  34. Mousavinejad, G., Emam-Djomeh, Z., Rezaei, K., & Khodaparast, M.-H.-H. (2009). Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chemistry, 115(4), 1274–1278.CrossRefGoogle Scholar
  35. Navarro, P., Nicolas, T.-S., Gabaldon, J.-A., Mercader-Ros, M.-T., Calín-Sánchez, Á., Carbonell-Barrachina, Á.-A., & Pérez-López, A.-J. (2011). Effects of cyclodextrin type on vitamin C, antioxidant activity, and sensory attributes of a mandarin juice enriched with pomegranate and goji berries. Journal of Food Science, 76(5), S319–S324.CrossRefGoogle Scholar
  36. Nicoli, M.-C., Anese, M., & Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science and Technology, 10(3), 94–100.CrossRefGoogle Scholar
  37. Ozgen, M., Durgac, C., Serce, S., & Kaya, C. (2008). Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chemistry, 111(3), 703–706.CrossRefGoogle Scholar
  38. Poyrazoglu, E., Gökmen, V., & Nevzat, A. (2002). Organic acids and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. Journal of Food Composition and Analysis, 15(5), 567–575.Google Scholar
  39. Rahman, S. (1999). Handbook of food preservation. New York: Marcel Dekker.Google Scholar
  40. Raisi, A., Aroujalian, A., & Kaghazchi, T. (2008). Multicomponent pervaporation process for volatile aroma compounds recovery from pomegranate juice. Journal of Membrane Science, 322(2), 339–348.CrossRefGoogle Scholar
  41. Saw, N.-K., Chow, K., Rao, P.-N., & Kavanagh, J.-P. (2007). Effects of inositol hexaphosphate (phytate) on calcium binding, calcium oxalate crystallization and in vitro stone growth. Journal of Urology, 177(6), 2366–2370.CrossRefGoogle Scholar
  42. Schwartz, E., Tzulker, R., Glazer, I., Bar-Yaakov, I., Wiesman, Z., Tripler, E., Bar-Ilan, I., Fromm, H., Borochov-Neori, H., Holland, D., & Amir, R. (2009). Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. Journal of Agricultural and Food Chemistry, 57(19), 9197–9209.CrossRefGoogle Scholar
  43. Seeram, N.-P., Adams, L.-S., Henning, S.-M., Niu, Y., Zhang, Y., Nair, M.-G., & Heber, D. (2005). In vitro antiproliferative, a poptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. The Journal of Nutritional Biochemistry, 16(6), 360–367.CrossRefGoogle Scholar
  44. Sham, P.-W.-Y., Scaman, C.-H., & Durance, T.-D. (2001). Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. Journal of Food Science, 66(9), 1341–1347.CrossRefGoogle Scholar
  45. Sharma, G.-P., & Prasad, S. (2004). Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food Engineering, 65(4), 609–617.CrossRefGoogle Scholar
  46. Singh, D.-B., Kingly, A.-R.-P., & Jain, R.-K. (2007). Studies on separation techniques of pomegranate arils and their effect on quality of anardana. Journal of Food Engineering, 79(2), 671–674.CrossRefGoogle Scholar
  47. Singleton, V.-L., Orthofer, R., & Lamuela-Reventos, R.-M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  48. Sun, J., Chu, Y.-F., Wu, X., & Liu, R.-H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449–7454.CrossRefGoogle Scholar
  49. Szumny, A., Figiel, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, A.-A. (2010). Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. Journal of Food Engineering, 97, 253–260.CrossRefGoogle Scholar
  50. Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., & Amir, R. (2007). Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, 55(23), 9559–9570.CrossRefGoogle Scholar
  51. Vardin, H., & Fenercioglu, H. (2003). Study on the development of pomegranate juice processing technology: Clarification of pomegranate juice. Nahrung, 47, 300–303.CrossRefGoogle Scholar
  52. Vucenik, I., & Shamsuddin, A.-M. (2006). Protection against cancer by dietary IP6 and inositol. Nutrition and Cancer, 55(2), 109–125.CrossRefGoogle Scholar
  53. Wojdyło, A., Figiel, A., & Oszmiański, J. (2009). Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry, 57(4), 1337–1343.CrossRefGoogle Scholar
  54. Xu, Q., Kanthasamy, A.-G., & Reddy, M.-B. (2008). Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson’s disease. Toxicology, 245(1–2), 101–108.CrossRefGoogle Scholar
  55. Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry, 93(2), 273–278.CrossRefGoogle Scholar
  56. Zhuang, H., Du, J., & Wang, Y. (2011). Antioxidant capacity changes of 3 cultivar Chinese pomegranate (Punica granatum L.) juices and corresponding wines. Journal of Food Science, 76(4), C606–C611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ángel Calín-Sánchez
    • 1
  • Adam Figiel
    • 2
  • Francisca Hernández
    • 3
  • Pablo Melgarejo
    • 3
  • Krzysztof Lech
    • 2
  • Ángel A. Carbonell-Barrachina
    • 1
  1. 1.Departamento de Tecnología Agroalimentaria, Grupo Calidad y Seguridad AlimentariaUniversidad Miguel HernándezOrihuelaSpain
  2. 2.Institute of Agricultural EngineeringWrocław University of Environmental and Life SciencesWrocławPoland
  3. 3.Departamento de Producción Vegetal y Microbiología. Grupo de Fruticultura y Técnicas de ProducciónUniversidad Miguel HernándezOrihuelaSpain

Personalised recommendations