Skip to main content
Log in

Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

There is growing concern in recent years for consumers about contamination of pesticides in fruits due to increasing use of pesticides in fruits. The objective of this study was to use surface-enhanced Raman spectroscopy (SERS) to detect and characterize pesticides extracted from fruit surfaces. Gold-coated SERS-active nanosubstrates were used for SERS measurement. Three types of pesticides (carbaryl, phosmet, and azinphos-methyl) widely used in apples and tomatoes were selected. Significantly enhanced Raman signals of pesticides were acquired by SERS from the extract of fruit samples and exhibited characteristic patterns of the analytes. Multivariate statistical methods such as partial least squares and principal component analysis were used to develop quantitative and qualitative models. SERS was able to detect all three types of pesticides extracted from fruit samples at the parts per million level. The study of detection limit demonstrated that at 99.86% confidence interval, SERS can detect carbaryl at 4.51 ppm, phosmet at 6.51 ppm, and azinphos-methyl at 6.66 ppm spiked on apples; and carbaryl at 5.35 ppm, phosmet at 2.91 ppm, and azinphos-methyl at 2.94 ppm on tomatoes. Most of these detection limits meet the maximum residue limits established by Food and Agriculture Organization of the United Nations and World Health Organization. Satisfactory recoveries (78–124%) were achieved for samples with concentrations at and larger than the detection limit. These results demonstrate that SERS coupled with novel SERS-active nanosubstrates is a rapid, sensitive, and reliable method for detection and characterization of chemical contaminants in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abou-Arab, A. A. K. (1999). Behavior of pesticides in tomatoes during commercial and home preparation. Food Chemistry, 65(4), 509–514.

    Article  CAS  Google Scholar 

  • Albrecht, M. G., & Creighton, J. A. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 99(15), 5215–5217.

    Article  CAS  Google Scholar 

  • AOAC. (2005). Official methods of analysis of aoac international. Arlington: AOAC International.

    Google Scholar 

  • Boese, A. D., & Martin, J. M. L. (2004). Vibrational spectra of the azabenzenes revisited: Anharmonic force fields. Journal of Physical Chemistry A, 108(15), 3085–3096.

    Article  CAS  Google Scholar 

  • Costa, L. G. (2006). Current issues in organophosphate toxicology. Clinica Chimica Acta, 366(1–2), 1–13.

    Article  CAS  Google Scholar 

  • FAO/WHO. (1967). Carbaryl (pesticide residues in food: 1967 evaluations). Available at: http://www.inchem.org/documents/jmpr/jmpmono/v067pr03.htm. Accessed 1 October 2010.

  • FAO/WHO. (1984). Phosmet (pesticide residues in food: 1984 evaluations). Available at: http://www.inchem.org/documents/jmpr/jmpmono/v84pr37.htm. Accessed 1 October 2010.

  • FAO/WHO. (2009). Pesticide residues in food (MRLS/EMRLS). Available at: http://www.codexalimentarius.net/mrls/pestdes/jsp/pest_q-e.jsp. Accessed 1 October 2010.

  • FDA. (2006). Pesticide residue monitoring program results and discussion fy 2006. Available at: http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/ResidueMonitoringReports/ucm125187.htm. Accessed 22 September 2010.

  • FDA. (2007a). Pesticide monitoring program fy 2007. Available at: http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/ResidueMonitoringReports/ucm169577.htm#summary. Accessed 22 September 2010.

  • FDA. (2007b). Pesticide monitoring program fy 2007. Available at: http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/ResidueMonitoringReports/default.htm. Accessed 30 April 2011.

  • Fischer, G., Smith, D. M., & Nwankwoala, A. U. (1997). The electronic spectroscopy of 1,2,3-triazine. Chemical Physics, 221(1–2), 11–21.

    Article  CAS  Google Scholar 

  • Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26(2), 163–166.

    Article  CAS  Google Scholar 

  • Goodacre, R., Timmins, E. M., Burton, R., Kaderbhai, N., Woodward, A. M., Kell, D. B., et al. (1998). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology, 144(5), 1157–1170.

    Article  CAS  Google Scholar 

  • Grimalt, S., Pozo, Ó. J., Sancho, J. V., & Hernández, F. (2007). Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits. Analytical Chemistry, 79(7), 2833–2843.

    Article  CAS  Google Scholar 

  • Gunther, F. A., & Blinn, R. C. (1955). Analysis of insecticides and acaricides: A treatise on sampling, isolation and determination, including residue methods. New York: Interscience.

    Google Scholar 

  • Gupta, R. C. (2004). Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicology Mechanisms and Methods, 14(3), 103–143.

    Article  CAS  Google Scholar 

  • Haynes, C. L., McFarland, A. D., & Van Duyne, R. P. (2005). Surface-enhanced Raman spectroscopy. Analytical Chemistry, 77(17), 338a–346a.

    Article  CAS  Google Scholar 

  • He, F. (2000). Neurotoxic effects of insecticides—Current and future research: A review. Neurotoxicology, 21(5), 829–835.

    CAS  Google Scholar 

  • He, L., Kim, N.-J., Li, H., Hu, Z., & Lin, M. (2008a). Use of a fractal-like gold nanostructure in surface enhanced Raman spectroscopy for detection of selected food contaminants. Journal of Agricultural and Food Chemistry, 56(21), 9843–9847.

    Article  CAS  Google Scholar 

  • He, L., Liu, Y., Lin, M., Awika, J., Ledoux, D. R., Li, H., et al. (2008b). A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sensing and Instrumentation for Food Quality and Safety, 2(1), 66–71.

    Article  Google Scholar 

  • Jeanmaire, D. L., & Van Duyne, R. P. (1977). Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry, 84(1), 1–20.

    Article  CAS  Google Scholar 

  • Kegley, S. E., & Wise, L. J. (1998). Pesticides in fruits and vegetables. Mill Valley: University Science Books.

    Google Scholar 

  • Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (2002). Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 14(18), R597–R624.

    Article  CAS  Google Scholar 

  • Kolosova, A. Y., Park, J.-H., Eremin, S. A., Kang, S.-J., & Chung, D.-H. (2003). Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of the organophosphorus pesticide parathion-methyl. Journal of Agricultural and Food Chemistry, 51(5), 1107–1114.

    Article  CAS  Google Scholar 

  • Lai, K., Zhang, Y., Du, R., Zhai, F., Rasco, B., & Huang, Y. (2011). Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sensing and Instrumentation for Food Quality and Safety, 5(1), 19–24.

    Article  Google Scholar 

  • Liu, M., Hashi, Y., Song, Y., & Lin, J.-M. (2005). Simultaneous determination of carbamate and organophosphorus pesticides in fruits and vegetables by liquid chromatography–mass spectrometry. Journal of Chromatography A, 1097(1–2), 183–187.

    Article  CAS  Google Scholar 

  • Liu, B., Lin, M., & Li, H. (2010). Potential of sers for rapid detection of melamine and cyanuric acid extracted from milk. Sensing and Instrumentation for Food Quality and Safety, 4(1), 13–19.

    Article  CAS  Google Scholar 

  • Lu, X., Al-Qadiri, H., Lin, M., & Rasco, B. (2011). Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology, 4(6), 919–935.

    Article  Google Scholar 

  • Ortelli, D., Edder, P., & Corvi, C. (2005). Pesticide residues survey in citrus fruits. Food Additives and Contaminants, 22(5), 423–428.

    Article  CAS  Google Scholar 

  • Rawn, D. F. K., Quade, S. C., Shields, J. B., Conca, G., Sun, W.-F., Lacroix, G. M. A., et al. (2006). Organophosphate levels in apple composites and individual apples from a treated canadian orchard. Journal of Agricultural and Food Chemistry, 54(5), 1943–1948.

    Article  CAS  Google Scholar 

  • Sentellas, S., Saurina, J., Hernández-Cassou, S., Galceran, M. T., & Puignou, L. S. (2001). Multivariate calibration methods for quantification in strongly overlapping capillary electrophoretic peaks. Journal of Chromatography A, 909(2), 259–269.

    Article  CAS  Google Scholar 

  • Shadi, I. T., Xu, Y., & Goodacre, R. (2010). Quantitative analysis of the banned food dye sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. Journal of Physical Chemistry C, 114(16), 7285–7290.

    Article  Google Scholar 

  • Socrates, G. (2004). Infrared and Raman characteristic group frequencies. New York: Wiley.

    Google Scholar 

  • Strickland, A. D., & Batt, C. A. (2009). Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Analytical Chemistry, 81(8), 2895–2903.

    Article  CAS  Google Scholar 

  • Trotter, P. J. (1977). Azo dye tautomeric structures determined by laser-Raman spectroscopy. Applied Spectroscopy, 31(1), 30–35.

    Article  CAS  Google Scholar 

  • Valdés-Ramírez, G., Fournier, D., Ramírez-Silva, M. T., & Marty, J. L. (2008). Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Talanta, 74(4), 741–746.

    Article  Google Scholar 

  • Walz, I., & Schwack, W. (2007). Multienzyme inhibition assay for residue analysis of insecticidal organophosphates and carbamates. Journal of Agricultural and Food Chemistry, 55(26), 10563–10571.

    Article  CAS  Google Scholar 

  • Wang, X. T., Shi, W. S., She, G. W., Mu, L. X., & Lee, S. T. (2010). High-performance surface-enhanced Raman scattering sensors based on ag nanoparticles-coated si nanowire arrays for quantitative detection of pesticides. Applied Physics Letters, 96, 053104–053104.

    Google Scholar 

  • Wesseling, C., Keifer, M., Ahlbom, A., McConnell, R., Moon, J.-D., Rosenstock, L., et al. (2002). Long-term neurobehavioral effects of mild poisonings with organophosphate and n-methyl carbamate pesticides among banana workers. International Journal of Occupational and Environmental Health, 8(1), 27–34.

    CAS  Google Scholar 

  • Wise, J. C., Vanderpoppen, R., & Vandervoort, C. (2009). Curative activity of insecticides on rhagoletis pomonella (Diptera: Tephritidae) in apples. Journal of Economic Entomology, 102(5), 1884–1890.

    Article  CAS  Google Scholar 

  • Zhang, Y., Muench, S. B., Schulze, H., Perz, R., Yang, B., Schmid, R. D., et al. (2005). Disposable biosensor test for organophosphate and carbamate insecticides in milk. Journal of Agricultural and Food Chemistry, 53(13), 5110–5115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Open Project Program (No. SKLF-KF-201108) of State Key Laboratory of Food Science and Technology, Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhou or Mengshi Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhou, P., Liu, X. et al. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol 6, 710–718 (2013). https://doi.org/10.1007/s11947-011-0774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0774-5

Keywords

Navigation