Skip to main content
Log in

A Comparison of the Effects of Pulsed Electric Field and Thermal Treatments on Grape Juice

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The work was aimed at comparing the effect of pulsed electric field (PEF) and thermal technologies on physical, chemical, microbiological, and nutritional properties of freshly squeezed grape juice of different varieties when they are applied using continuous flow systems. It has been evidenced that grape variety is a factor to be taken into account when comparing the processing effects of PEF and heat treatments. Nevertheless, results of general and specific microbial populations were not affected by it and followed a very similar trend with each processing treatment. Soluble solids, pH, acidity, and the electrical conductivity of grape juice were not affected by PEF processing. On average, PEF treatment reduced the radical scavenging activity a 9% in front of the 13% of the heat treatment whereas both treatments halved the protein content. Data of vitamin C, total polyphenol, cinnamic acid, free catechin and non-flavonoid content were not enough to show differences between both treatments. However, all these nutritionally related properties share the same behaviour, PEF processing yielded milder values than heat processed samples. Information comparing PEF and thermal processes on food products help to clarify the advantages and disadvantages of each technology even though the disparity in development and use of each one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiló Aguayo, I., Soliva Fortuny, R., & Martín Belloso, O. (2010). Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices. Journal of the Science of Food and Agriculture, 90(10), 1597–1604.

    Article  Google Scholar 

  • Álvarez, I., Raso, J., Palop, A., & Sala, F. (2000). Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 55(1–3), 143–146.

    Article  Google Scholar 

  • Atlas, R., & Parks, L. (1993). Handbook of microbiological media. London: CRC Press Inc.

    Google Scholar 

  • Ayhan, Z., Zhang, Q., & Min, B. (2002). Effects of pulsed electric field processing and storage on the quality and stability of single-strength orange juice. Journal of Food Protection, 65(10), 1623–1627.

    CAS  Google Scholar 

  • Azhuvalappil, Z., Fan, X., Geveke, D., & Zhang, H. (2010). Thermal and non-thermal processing of apple cider: Storage quality, under equivalent process conditions. Journal of Food Quality, 3(5), 612–631.

    Article  Google Scholar 

  • Beattie, J. (1915). Report on the electrical treatment of milk to the city of Liverpool. Technical report, C. Tinling and Co, Liverpool.

  • Bendicho, S., Espachs, A., Arántegui, J., & Martín, O. (2002). Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. Journal of Dairy Research, 69(1), 113–123.

    Article  CAS  Google Scholar 

  • Bendicho, S., Marsellés Fontanet, A., Barbosa Cánovas, G., & Martín, O. (2005). High intensity pulsed electric fields and heat treatments applied to a protease from Bacillus subtilis. A comparison study of multiple systems. Journal of Food Engineering, 69(3), 317–323.

    Article  Google Scholar 

  • Blocher, J., & Busta, T. (1983). Bacterial spore resistance to acid. Food Technology, 37, 87–99.

    CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Brand Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenchaft Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • Castro, A., Swanson, B., Barbosa Cánovas, G., & Dunker, A. (2001). Pulsed electric field denaturation of bovine alkaline phosphatase. In Pulsed electric fields in food processing. Fundamental aspects and applications (pp. 83–103). Technomic Publishing Company Inc.

  • Doncaster, C., & Davey, A. (2007). Analysis of variance and covariance. Cambridge University Press.

  • Elez Martínez, P., Escolà Hernández, J., Barbosa Cánovas, G., & Martín Belloso, O. (2005). Inactivation of Lactobacillus brevis in orange juice by high intensity pulsed electric fields. Food Microbiology, 22(4), 311–319.

    Article  Google Scholar 

  • Elez Martínez, P., & Martín Belloso, O. (2007). Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102(1), 201–209.

    Article  Google Scholar 

  • Garde Cerdán, T., Árias Gil, M., Marsellés Fontanet, A., Ancín Azpilicueta, C., & Martín Belloso, O. (2007a). Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control, 18(5), 473–479.

    Article  Google Scholar 

  • Garde Cerdán, T., Marsellés Fontanet, A., Árias Gil, M., Martín Belloso, O., & Ancín Azpilicueta, C. (2007b). Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chemistry, 103(3), 771–777.

    Article  Google Scholar 

  • Glories, Y. (1984). La couleur des vins rouges. Connaissance de la Vigne et du Vin, 18(4), 253–271.

    CAS  Google Scholar 

  • Góngora Nieto, M., Sepúlveda, D., Pedrow, P., Barbosa Cánovas, G., & Swanson, B. (2002). Food processing by pulsed electric fields: Treatment delivery, inactivation level, and regulatory aspects. LWT—Food Science and Technology, 35(5), 375–388.

    Google Scholar 

  • Grimi, N., Lebovka, N., Vorobiev, E., & Vaxelaire, J. (2009). Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophysics, 4(3), 191–198.

    Article  Google Scholar 

  • Hidalgo Togores, J. (2002). Tratado de enología. Madrid: Ediciones Mundi-Prensa.

  • Hoogland, H., & de Haan, W. (2007). Economic aspects of pulsed electric field treatment of food. In Food preservation by pulsed electric fields. From research to application. Cambridge, England: Woodhead Publishing Limited.

    Google Scholar 

  • Hoover, D. (1997). Minimally processed fruits and vegetables: Reducing microbial load by nonthermal physical treatments. Food Technology, 51(6), 66–71.

    Google Scholar 

  • Howard, L., Clark, J., & Brownmiller, C. (2003). Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. Journal of the Science of Food and Agriculture, 83(12), 1238–1247.

    Article  CAS  Google Scholar 

  • Howard, L., Pandjaitan, N., Morelock, T., & Gil, M. (2002). Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. Journal of Agricultural and Food Chemistry, 50(21), 5891–5896.

    Article  CAS  Google Scholar 

  • Hülsheger, H., & Niemann, E. (1980). Lethal effects of high-voltage pulses on Escherichia coli K12. Radiation and Environmental Biophysics, 18(4), 281–288.

    Article  Google Scholar 

  • Jaya, S., Varadharaju, N., & Kennedy, Z. (2004). Inactivation of microorganisms in the fruit juice using pulsed electric fields. Journal of Food Science and Technology-Mysore, 41(6), 652–655.

    Google Scholar 

  • Jia, M., Zhang, Q., & Min, D. (1999). Pulsed electric field processing effects on flavor compounds and microorganisms of orange juice. Food Chemistry, 65(4), 445–451.

    Article  CAS  Google Scholar 

  • Korea Food Research Institute (1998). Studies on the production of fresh citrus fruit juice by the nonthermal pasteurization technique using pulsed electric fields (Vol. 12, pp. 30–70). Korea Food Research Institute. E1483–1019.

  • Kramling, T., & Singleton, V. (1969). An estimate of the nonflavonoid phenols in wines. American Journal of Enology and Viticulture, 20(2), 86–92.

    CAS  Google Scholar 

  • Lopez, N., Puertolas, E., Condon, S., Alvarez, I., & Raso, J. (2008a). Application of pulsed electric fields for improving the maceration process during vinification of red wine: Influence of grape variety. European Food Research and Technology, 227(4), 1099–1107.

    Article  CAS  Google Scholar 

  • Lopez, N., Puertolas, E., Condon, S., Alvarez, I., & Raso, J. (2008b). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of tempranillo grapes. Innovative Food Science and Emerging Technologies, 9(4), 477–482.

    Article  CAS  Google Scholar 

  • Marsellés Fontanet, A., & Martín Belloso, O. (2007). Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. Journal of Food Engineering, 83(3), 452–462.

    Article  Google Scholar 

  • Marsellés Fontanet, A., Puig, A., Olmos, P., Mínguez Sanz, S., & Martín Belloso, O. (2009). Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. International Journal of Food Microbiology, 130(3), 159–165.

    Article  Google Scholar 

  • Ministerio de Agricultura, Pesca y Alimentación (2007). Real decreto 1518/2007, de 16 de noviembre, por el que se establecen parámetros mínimos de calidad en zumos de frutas y los métodos de análisis aplicables. In Boletín Oficial del Estado (Vol. 294, pp. 50632–50639). Agencia Estatal Boletín Oficial del Estado.

  • Mosqueda Melgar, J., Elez Martínez, P., Raybaudi Massilia, R., & Martín Belloso, O. (2008). Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: A review. Critical Reviews in Food Science and Nutrition, 48(8), 747–759.

    Article  Google Scholar 

  • Nagel, C., & Glories, Y. (1991). Use of a modified dimethylaminocinnamaldehyde reagent for analysis of flavanols. American Journal of Enology and Viticulture, 42(4), 364–366.

    CAS  Google Scholar 

  • Odriozola Serrano, I., Hernández Jover, T., & Martín Belloso, O. (2007). Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chemistry, 105, 1151–1158.

    Article  CAS  Google Scholar 

  • Odriozola Serrano, I., Soliva Fortuny, R., & Martín Belloso, O. (2008a). Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 9, 272–279.

    Article  CAS  Google Scholar 

  • Odriozola Serrano, I., Soliva Fortuny, R., & Martín Belloso, O. (2008b). Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high intensity pulsed electric fields of heat treatments. European Food Research and Technology, 228(2), 239–248.

    Article  CAS  Google Scholar 

  • Ortega Rivas, E. (2007). Processing effects for safety and quality in some non-predominant food technologies. Critical Reviews in Food Science and Nutrition, 47(2), 161–173.

    Article  CAS  Google Scholar 

  • Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-PLUS. Statistics and Computing. New York: Springer-Verlag.

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & the R Core team (2009). nlme: Linear and nonlinear mixed effects models. R package version 3.1-96.

  • Puertolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010). Potential applications of PEF to improve red wine quality. Trends in Food Science and Technology, 21(5), 247–255.

    Article  CAS  Google Scholar 

  • R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Reidel, Dordrecht, Holland.

  • Sarkar, D. (2010). Lattice: Lattice graphics. R package version 0.18-8.

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Singleton, V., Orthofer, R., & Lamuela Raventós, R. (1998). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  Google Scholar 

  • Sobrino López, A., & Martín Belloso, O. (2010). Review: Potential of high-intensity pulsed electric field technology for milk processing. Food Engineering Reviews, 2(1), 17–27.

    Article  Google Scholar 

  • Stone, G. (1909). Influence of electricity on microorganisms. Botanical Gazette, 48, 359–379.

    Article  Google Scholar 

  • Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423.

    Article  CAS  Google Scholar 

  • Vanderzant, C., & Splittstoesser, D. (1992). Compendium of method for the microbiological examination of foods. Washington, USA: American Public Health Association.

    Google Scholar 

  • Wouters, P., Álvarez, I., & Raso, J. (2001). Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology, 12(3–4), 112–121.

    Article  CAS  Google Scholar 

  • Wu, Y., Mittal, G., & Griffiths, M. (2005). Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials. Biosystems Engineering, 90(2), 1–7.

    Article  Google Scholar 

  • Yeom, H., Streaker, C., Zhang, Q., & Min, D. (2000). Effects of pulsed electric fields on the quality of orange juice an comparison with heat pasteurization. Journal of Agricultural and Food Chemistry, 48(10), 4597–4605.

    Article  CAS  Google Scholar 

  • Zárate Rodríguez, E., & Ortega Rivas, E. (2002). Quality changes in apple juice as related to nonthermal processing. Journal of Food Quality, 23, 337–349.

    Article  Google Scholar 

  • Zhang, Y., Gao, B., Zhang, M., Shi, J., & Xu, Y. (2010). Pulsed electric field processing effects on physicochemical properties, flavor compounds and microorganisms of longan juice. Journal of Food Processing and Preservation, 34(6), 1121–1138.

    Article  CAS  Google Scholar 

  • Zhong, K., Hu, X., Zhao, G., Chen, F., & Liao, X. (2005). Inactivation and conformatioanl change of horseradish peroxidase induced by pulsed electric field. Food Chemistry, 92(3), 473–379.

    Article  Google Scholar 

  • Zoecklein, B., Fuselsong, K., Gump, G., & Nury, F. (1995). Wine analysis and production. The Chapman and Hall Enology Library. New York, USA: Chapman and Hall.

    Google Scholar 

  • Zuñiga, M., Pardo, I., & Ferrer, S. (1993). An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. International Journal of Food Microbiology, 18, 37–42.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministerio de Ciencia y Tecnología of Spain through the project AGL2002-04399-C02-02. Á. Robert Marsellés Fontanet would like to thank the Ministerio de Ciencia y Tecnología for his pre-doctoral grant, and Olga Martín Belloso the ICREA Academia for the award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsellés-Fontanet, Á.R., Puig-Pujol, A., Olmos, P. et al. A Comparison of the Effects of Pulsed Electric Field and Thermal Treatments on Grape Juice. Food Bioprocess Technol 6, 978–987 (2013). https://doi.org/10.1007/s11947-011-0731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0731-3

Keywords

Navigation