Food and Bioprocess Technology

, Volume 5, Issue 8, pp 2978–2989 | Cite as

Drying Sage (Salvia officinalis L.) Plants and Its Effects on Content, Chemical Composition, and Radical Scavenging Activity of the Essential Oil

  • Ibtissem Hamrouni SellamiEmail author
  • Iness Bettaieb Rebey
  • Jazia Sriti
  • Fatma Zohra Rahali
  • Ferid Limam
  • Brahim Marzouk
Original Paper


Chemical composition and antioxidant activity of Salvia officinalis essential oil (EO) were studied under different drying methods of plant material. Results obtained showed that dried plant material yielded more essential oils than did the fresh one. The highest EO yields were obtained by infrared drying at 45 °C (0.39%) followed by air drying (0.30%) and oven drying at 45 °C (0.26%). The analysis of EOs by gas chromatography–mass spectrometry, showed in each of 55 identified compounds belonging mostly to oxygenated monoterpenes. This class of compounds was significantly affected by following drying methods: oven at 65 °C, microwave (500 W), and infrared at 45 °C. The main components of sage EO, 1,8-cineole, α and β-thujone, camphor, viridiflorol, and manool showed significant variation (p < 0.05) with drying methods. Their concentrations increased significantly, particularly when drying sage at ambient air. Finally, the screening of antioxidant activity of the different sage EOs using the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radical (DPPH) assay showed an appreciable reduction of the stable radical DPPH, although microwave drying was the most efficient method with an IC50 of 1.60% as compared with fresh plant (IC50 = 5.32).


Salvia officinalis L. Essential oil Oven drying Infrared drying Microwave drying Antioxidant activity 



We thank Dr. Mihoubi Daoued (Energetic and Thermal Processing Laboratory, CRTE, B.P. 95, 2050 Hammam-Lif, Tunisia) for the technical support of infrared drying experiments and for his helpful recommendations.


  1. Adams, R. (2001). Identification of essential oil components by Gas Chromatography/Quadrupole Mass Spectrometry. Carol Stream, IL, USA: Allured Publishing Corporation, 456p.Google Scholar
  2. Agnaniet, H., Makani, T., Akagah, A., Menut, C. & Bessiere, J.M. (2005). Volatile constituents and antioxidant activity of essential oils from Lippia multiflora mold grown in Gabon. Flavour and Fragrance Journal, 20, 3438.Google Scholar
  3. Arabhosseini, A., Padhye, S., van Beek, T.A., van Boxtel, A.J.B., Huisman, W., Posthumus, M.A. & Müller, J. (2006). Loss of essential oil tarragon (Artemisia dracunculus L.) due to drying. Journal of the Science of Food and Agriculture, 86, 2543–2550.Google Scholar
  4. Asekun, O. T., Grierson, D. S., & Afolayan, A. J. (2007a). Characterization of essential oils from Helichrysum odoratissimum using different drying methods. Journal of Applied Science, 7(7), 1005–1008.CrossRefGoogle Scholar
  5. Asekun, O.T., Grierson, D.S. & Afolayan, A.J. (2007b). Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. capensis. Food Chemistry, 107, 995–998.Google Scholar
  6. Ben Taarit, M., Msaada, K., Hosni, K., Hammami, M., Kchouk, M.E. & Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30, 333–337.Google Scholar
  7. Blanco, M. C. S. G., Ming, L. C., Marques, M. O. M., & Bovi, O. A. (2002). Drying temperature effects in peppermint essential oil content and composition. Acta Horticulturae, 569, 95–98.Google Scholar
  8. Blanco, M. C. S. G., Marques, M. O. M., Ming, L. C., & Bovi, O. A. (2002). Drying temperature effects in rosemary essential oil content and composition. Acta Horticulturae, 569, 99–103.Google Scholar
  9. Braga, N.P., Cremasco, M.A. & Valle, R.C.C.R. (2005). The effects of fixed-bed drying on the yield and composition of essential oil from long pepper (Piper hispidinervium C. DC) leaves. Brazilian Journal of Chemical Engineering, 22, 257–262.Google Scholar
  10. Buggle, V., Ming, L.C., Furtado, E.L., Rocha, S.F.R. & Marques, M.O.M. (1999). Influence of different drying temperatures on the amount of essential oils and citral content in Cymbopogon citrates (DC) Stapf.–Poaceae. Acta Horticulturae, 500, 71–74.Google Scholar
  11. Burits, M., Asres, K., & Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia abyssinica and Juniperus procera. Phytotherapy Reseach, 15, 103–108.CrossRefGoogle Scholar
  12. Castro, M.D., Ming, L.C., Marques, M.O.M. & Machado, S.R. (2001). Effect of different drying temperatures on Lippia alba essential oil production and yield. In: Proceeding of the 5th National Symposium New Crops and New uses. 8–11 November 2001 Atlanta, USA.Google Scholar
  13. Dίaz-Maroto, M.C., Perez-Coello, M.S., González Villas, M.A. & Cabezudo M.D. (2003). Influence of drying on the flavor quality of spearmint (Mentha spicata L.). Journal of Agricultural and Food Chemistry, 51, 1265–1269.Google Scholar
  14. Fellows, P. (1988). Food processing technology principal and practice (pp. 304–313). London: Ellis Horwood Ltd.Google Scholar
  15. Gershenzon, J., McConkey, M. E., & Croteau, R. B. (2000). Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology, 122, 205–213.CrossRefGoogle Scholar
  16. Gomes, P. & Ferreira, M. (2001). Organ and season-dependant variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. Journal of Agricultural and Food Chemistry, 49, 2908–2916.Google Scholar
  17. Hanato, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effect. Chemical and Pharmeutical Bulletin, 36, 1090–1097.Google Scholar
  18. Hay, R.K.M. & Waterman, P.G. (1993). Volatile oil crops: Their biology, biochemistry and production. In: R. K. M., Hay & P. G. Waterman. Longman Scientific and Technical, Harlow, England, pp.1–2.Google Scholar
  19. Huopalahti, R., Kesälahti, R. & Linko, R. (1985). Effect of hot air and freeze-drying on the volatile compounds of dill (Anethum graveolens L.) herb. Journal of Agricultural Sciences of Finland, 57, 133–138.Google Scholar
  20. Janicksak, G., Zupko, I., Mathe, I., & Hohmann, J. (2010). Comparative study of the antioxidant activities of eleven Salvia species. Natural Product Communications, 5, 227–230.Google Scholar
  21. Kelen, M., & Tepe, B. (2008). Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresource Technology, 99, 4096–4104.CrossRefGoogle Scholar
  22. Khangholi, S., & Rezaeinodehi, A. (2008). Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pakistan Journal of Biological Sciences, 11, 934–937.CrossRefGoogle Scholar
  23. Khorshidi, J., Mohammadi, R., Fakhr, T.M. & Nourbakhsh, H. (2009). Influence of drying methods, extraction time, and organ type on essential oil content of rosemary (Rosmarinus officinalis L.). Natural Science, 7 (11), 42–44.Google Scholar
  24. Kim, H. J., Chen, F., Wu, C. Q., Wang, X., Chung, H. Y., & Jin, Z. Y. (2004). Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. Journal of Agricultural and Food Chemistry, 52, 2849–2854.CrossRefGoogle Scholar
  25. Kintzios, S.E. (2000). Medicinal and aromatic plants—Industrial profiles, sage, the genus Salvia, vol. 14, Harwood Academic Publishers, The Netherlands.Google Scholar
  26. Länger, R., Mechtler, Ch, Tanzler, H., & Jurenitsch, J. (1993). Differences in the composition of the essential oil within an individual of Salvia officinalis. Planta Medica, 59, 635–636.CrossRefGoogle Scholar
  27. Lerdau, M., Guenther, A., & Monson, R. (1997). Plant production and emission of volatile organic compounds. Bioscience, 47, 373–383.CrossRefGoogle Scholar
  28. Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze-dried carrot slices. Food Research International, 31, 111–117.CrossRefGoogle Scholar
  29. Longaray Delamare, A.P., Moschen-Pistorello, I.T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chemistry, 100, 603–608.Google Scholar
  30. Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., & Tumlinson, J. H. (1994). Diurnal cycle of emission of induced volatile terpenoids from herbivore-injured cotton plants. Proceedings of the National Academy of Sciences of USA, 91, 11836–11840.CrossRefGoogle Scholar
  31. Mongpreneet, S., Abe, T., & Tsurusaki, T. (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55, 147–156.CrossRefGoogle Scholar
  32. Moyler, D. A. (1994). Spices-Recent Advances. In G. Charalambous (Ed.), Spices, herbs and edible fungi (pp. 1–70). London, UK: Elsevier Science.Google Scholar
  33. Mujumdar, A. S., & Law, C. L. (2010). Drying technology: Trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852.CrossRefGoogle Scholar
  34. Müller, J., & Heindl, A. (2006). Drying of medicinal plants. In R. J. Bogers, L. E. Craker, & D. Lange (Eds.), Medicinal and aromatic plants (237–252). The Netherlands: Springer.Google Scholar
  35. Murat, T., Sezai, E., Memnune, S., Hakan, O., Taskin, P., & Erdogan, O. (2009). Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biological Research, 42, 175–181.Google Scholar
  36. Omidbaigi, R., Sefidkon, F., & Kazemi, F. (2004). Influence of drying methods on the essential oil content and composition of Roman chamomile. Flavour and Fragrance Journal, 19, 196–198.CrossRefGoogle Scholar
  37. Ould Ahmedou, S. A., Rouaud, O., & Havet, M. (2008). Assessment of the electrodynamic drying process. Food and Bioprocess Technology, 2(3), 240–247.CrossRefGoogle Scholar
  38. Patro, B. S., Bauri, A. K., Mishra, S., & Chattopadhyay, S. (2005). Antioxidant activity of Myristica malabarica extracts and their constituents. Journal of Agricultural and Food Chemistry, 53, 6912–6918.CrossRefGoogle Scholar
  39. Radulescu, V., Chiliment, S., & Oprea, E. (2004). Capillary gas chromatography–mass spectrometry of volatile and semi-volatile compound of Salvia officinalis. Journal of Chromatography A, 1027, 121–126.CrossRefGoogle Scholar
  40. Romeilah, R. M., Fayed, S. A., & Mahmoud, G. I. (2010). Chemical compositions, antiviral and antioxidant activities of seven essential oils. Journal of Applied Sciences Research, 6(1), 50–62.Google Scholar
  41. Ruberto, G., & Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69, 167–174.CrossRefGoogle Scholar
  42. Santos-Gomes, P.C. & Fernandes-Ferreira, M. (2003). Essential oils produced by in vitro shoots of sage (Salvia officinalis L.). Journal of Agricultural and Food Chemistry, 51, 2260–2266.Google Scholar
  43. Sefidkon, F., Abbasi, K., & Bakhshi, K. G. (2006). Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chemistry, 99, 19–23.CrossRefGoogle Scholar
  44. Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., De Pasquale, A., et al. (2005). Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry, 89, 549–554.CrossRefGoogle Scholar
  45. Tucker, A.O. & Maciarello, M.J. (1990). Essential oils of cultivars of Dalmatian sage (Salvia officinalis L.). Journal of Essential Oil Research, 2, 139–144.Google Scholar
  46. Venskutonis, P.R. (1997). Effect of drying on the volatile constituents of Thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chemistry, 59, 219–227.Google Scholar
  47. Wang, J., & Sheng, K. (2006). Far-infrared and microwave drying of peach. LWT Food Science and Technology, 39, 247–255.CrossRefGoogle Scholar
  48. Yousif, A. N., Durance, T. D., Scaman, D. H., & Girard, B. (2000). Headspace volatiles and physical characteristics of vacuum microwave, air, and freeze-dried oregano (Lippia berlandieri Schauer). Journal of Food Science, 65, 926–930.CrossRefGoogle Scholar
  49. Yousif, A.L., Scaman, C.H., Durance, T.D. & Girard, B. (1999). Flavour volatiles and physical properties of vacuum-microwave and air dried sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 47, 47774781.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ibtissem Hamrouni Sellami
    • 1
    Email author
  • Iness Bettaieb Rebey
    • 1
  • Jazia Sriti
    • 1
  • Fatma Zohra Rahali
    • 1
  • Ferid Limam
    • 1
  • Brahim Marzouk
    • 1
  1. 1.Laboratory of Bioactive SubstancesCenter of Biotechnology of the Techno pole Borj-CedriaHammam-LifTunisia

Personalised recommendations