Food and Bioprocess Technology

, Volume 5, Issue 1, pp 31–46

Recent Studies Related to Microwave Processing of Fluid Foods

  • Claudia Salazar-González
  • M. Fernanda San Martín-González
  • Aurelio López-Malo
  • Maria E. Sosa-Morales
Review Paper

Abstract

Microwave heating is a convenient way to heat materials; it is considered to be a fast, clean, and easy to use technology. The use of microwaves for industrial food unit operations is the subject of research since several years ago. However, the application of microwaves depends, among other variables, on the dielectric properties of the material to be heated; otherwise, the efficiency of the process and the quality of the final product cannot be guaranteed. This paper reviews basic concepts related to microwaves and dielectric properties, and then it presents reported dielectric properties data for selected fluid foods and microwave-heating processes that have been recently studied. These processes are focused mainly on microbial inactivation, enzyme inactivation, chemical, physical, or sensory changes evaluation, or for reheating. The temperature uniformity is also discussed as a key issue for successful application of microwave heating, which is now applied by some companies.

Keywords

Dielectric properties Microwaves Fluid foods processing 

References

  1. Ahmad, S. S., Morgan, M. T., & Okos, M. R. (2001). Effects of microwave on the drying, checking and mechanical strength of baked biscuits. Journal of Food Engineering, 50(2), 63–75.CrossRefGoogle Scholar
  2. Ahmed, J., & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed., pp. 691–712). Boca Ratón FL: CRC Press.CrossRefGoogle Scholar
  3. Alibas, I. (2007). Microwave, air and combined microwave—air-drying parameters of pumpkin slices. LWT-Food Science and Technology, 40(8), 1445–1451.CrossRefGoogle Scholar
  4. Alibas Ozkan, I., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577–583.CrossRefGoogle Scholar
  5. Basaran, P., & Akhan, U. (2010). Microwave irradiation of hazelnuts for the control of aflatoxin producing Aspergillus parasiticus. Innovative Food Science & Emerging Technologies, 11(1), 113–117.CrossRefGoogle Scholar
  6. Bento, L., Rein, P., Sabliov, C., Boldor, D., & Coronel, P. (2006). C Massecuite re-heating using microwaves. Journal of the American Society of Sugar Cane Technologists, 26, 1–13.Google Scholar
  7. Bondaruk, J., Markowski, M., & Błaszczak, W. (2007). Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. Journal of Food Engineering, 81(2), 306–312.CrossRefGoogle Scholar
  8. Brinley, T. A., Dock, C. N., Truong, V. D., Coronel, P., Kumar, P., Simunovic, J., et al. (2007). Feasibility of utilizing bioindicators for testing microbial inactivation in sweet potato purees processed with a continuous-flow microwave system. Journal of Food Science, 72(5), 235–242.CrossRefGoogle Scholar
  9. Brinley, T. A., Truong, V. D., Coronel, P., Simunovic, J., & Sandeep, K. P. (2008). Dielectric properties of sweet potato purees at 915 MHz as affected by temperature and chemical composition. International Journal of Food properties, 11, 158–172.CrossRefGoogle Scholar
  10. Buffler, C. R. (1993). Microwave Cooking and Processing. New York: Van Nostrand Reinhold.Google Scholar
  11. Burfoot, D., Raiton, C. J., Foster, A. M., & Reavell, S. R. (1996). Modelling the pasteurization of prepared meals with microwaves at 896 MHz. Journal of Food Engineering, 30(1–2), 117–133.CrossRefGoogle Scholar
  12. Campañone, L. A., Paola, C. A. & Mascheroni, R. H. (2011). Modeling and simulation of microwave heating of foods under different process schedules. Food and Bioprocess Technology, doi:10.1007/s11947-010-0378-5, in press.
  13. Cañumir, J. A., Celis, J. E., De Bruijn, J., & Vidal, L. V. (2002). Pasteurisation of apple juice by using microwaves. Lebensmittel-Wissenschaft und-Technologie, 35(5), 389–392.CrossRefGoogle Scholar
  14. Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food and Bioprocess Technology, 4, 544–558.CrossRefGoogle Scholar
  15. Cinquanta, L., Albanese, D., Cuccurullo, G., & Di Matteo, M. (2010). Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science., 75(1), E46–E50.CrossRefGoogle Scholar
  16. Clare, D. A., Bang, W. S., Cartwright, M. A., Drake, P., Coronel, P., & Simunovic, J. (2005). Comparison of sensory, microbiological and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage. Journal of Dairy Science, 88, 4172–4182.CrossRefGoogle Scholar
  17. Coronel, P., Simunovic, J., & Sandeep, K. P. (2003). Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science, 68(6), 1976–1981.CrossRefGoogle Scholar
  18. Coronel, P., Truong, V. D., Simunovic, J., Sandeep, K. P., & Cartwright, G. D. (2005). Aseptic processing of sweet potato purees using a continuous flow microwave system. Journal of Food Science, 70(9), 531–536.CrossRefGoogle Scholar
  19. Coronel, P., Simunovic, J., Sandeep, K. P., & Kumar, P. (2008a). Dielectric properties of pumpable food materials at 915 MHz. International Journal of Food Properties, 11, 508–518.CrossRefGoogle Scholar
  20. Coronel, P., Simunovic, J., Sandeep, K. P., Cartwright, G. D., & Kumar, P. (2008b). Sterilization solutions for aseptic processing using a continuous flow microwave system. Journal of Food Engineering, 85, 528–536.CrossRefGoogle Scholar
  21. Cui, Z., Xu, S., & Sun, D. (2004). Microwave-vacuum drying kinetics of carrot slices. Journal of Food Engineering, 65(2), 157–164.CrossRefGoogle Scholar
  22. Cui, Z., Sun, L., Chen, W., & Sun, D. (2008). Preparation of dry honey by microwave-vacuum drying. Journal of Food Engineering, 84(4), 582–590.CrossRefGoogle Scholar
  23. Datta, A. K. (2003). Microwave food preservation. In D. R. Heldman (Ed.), Encyclopedia of Agricultural, Food, and Biological Engineering (pp. 657–661). New York: Marcel Dekker.Google Scholar
  24. Datta, A., Prosetya, H., & Hu, W. (1992). Mathematical modeling of batch heating of liquids in a microwave cavity. Journal of Microwave Power and Electromagnetic Energy, 27, 38–48.Google Scholar
  25. Datta, A. K., Summu, G., & Raghavan, G. S. V. (2005). Dielectric properties of foods. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of foods (3 th ed., pp. 501–566). Boca Ratón: CRC Press.Google Scholar
  26. Decareau, R. V. (1992). Microwave foods: new product development. Trumbull CN: Food and Nutrition.Google Scholar
  27. Dorantes-Alvarez, L., Barbosa-Cánovas, G., & Gutiérrez-López, G. (2000). Blanching of fruits and vegetables using microwaves. In G. V. Barbosa-Cánovas & G. W. Gould (Eds.), Innovations in food processing (pp. 149–162). Boca Ratón: CRC Press.Google Scholar
  28. Drouzas, A. E., & Shubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineering, 28, 203–209.CrossRefGoogle Scholar
  29. Duan, X., Zhang, M., Mujumdar, A. S., & Wang, S. (2010). Microwave freeze drying of sea cucumber (Stichopus japonicus). Journal of Food Engineering, 96(4), 491–497.CrossRefGoogle Scholar
  30. Duan, Z., Jiang, L., Wang, J., Yu, X., Wang, T. (2011). Drying and quality characteristics of tilapia fish fillets dried with hot-air microwave heating. Food and Bioproducts Processing, doi:10.1016/j.fbp.2010.11.005, in press.
  31. Erle, U., & Shubert, H. (2001). Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49(2–3), 193–199.CrossRefGoogle Scholar
  32. Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 94(1), 98–104.CrossRefGoogle Scholar
  33. Fu, Y. C. (2004). Fundamentals and industrial applications of microwave and radio frequency in food processing. In J. S. Smith & Y. H. Hui (Eds.), Food processing: principles and applications (pp. 79–100). Iowa: Blackwell.CrossRefGoogle Scholar
  34. Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82, 359–368.CrossRefGoogle Scholar
  35. Gentry, T. S., & Roberts, J. S. (2005). Design and evaluation of a continuous flow microwave pasteurization system for apple cider. LWT-Food Science and Technology, 38(3), 227–238.CrossRefGoogle Scholar
  36. Gerbo, N. M., Boldor, D., & Sabliov, C. M. (2008). Design of a measurement system for temperature distribution in continuous-flow microwave heating of pumpable fluids using infrared imaging and fiber optic technology. Journal of Microwave Power and Electromagnetic Energy, 42(1), 55–65.Google Scholar
  37. Giuliani, R., Bevilacqua, A., & Rosaria, M. C. (2010). Use of microwave processing to reduce the initial contamination by Alicyclobacillus acidoreterrestris in a cream of asparagus and effect of the treatment on the lipid fraction. Innovative Food Science and Emerging Technologies, 11(2), 328–334.CrossRefGoogle Scholar
  38. Gowen, A. A., Abu-Ghannam, N., Frias, J., & Oliveira, J. (2008). Modeling dehydration and rehydration of cooked soybeans subjected to combined microwave–hot-air drying. Innovative Food Science & Emerging Technologies, 9(1), 129–137.CrossRefGoogle Scholar
  39. Guzman-Gerónimo, R. I., López, M. G., & Dorantes-Alvarez, L. (2008). Microwave processing of avocado: Volatile flavor profiling and olfactometry. Innovative Food Science and Emerging Technologies, 9, 501–506.CrossRefGoogle Scholar
  40. Hossan, M. R., Byun, D., & Dutta, P. (2010). Analysis of microwave heating for cylindrical shaped objects. International Journal of Heat and Mass Transfer, 53, 5129–5138.CrossRefGoogle Scholar
  41. Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.CrossRefGoogle Scholar
  42. Içıer, F., & Baysal, T. (2004). Dielectric properties of food materials-2: Measurement techniques. Critical Reviews in Food Science and Nutrition, 44, 473–478.CrossRefGoogle Scholar
  43. Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.CrossRefGoogle Scholar
  44. Ikediala, J. N., Tang, J., Drake, S. R., & Neven, L. G. (2000). Dielectric properties of apple cultivars and codling moth larvae. Transactions of the ASAE, 43(5), 1175–1184.Google Scholar
  45. James, C., Barlow, K. E., James, S. J., & Swain, M. J. (2006). The influence of processing and product factors on the quality of microwave pre-cooked bacon. Journal of Food Engineering, 77(4), 835–843.CrossRefGoogle Scholar
  46. Jeong, J. Y., Lee, E. S., Choi, J. H., Lee, J. Y., Kim, J. M., Min, S. G., et al. (2007). Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Science, 75(3), 415–422.CrossRefGoogle Scholar
  47. Kassem, A. S., Shokr, A. Z., El-Mahdy, A. R., Aboukarima, A. M., & Hamed, E. Y. (2011). Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences, 10(1), 33–40.CrossRefGoogle Scholar
  48. Keskin, S. O., Summu, G., & Sahin, S. (2004). Bread baking in halogen lamp-microwave combination oven. Food Research International, 37(5), 489–495.CrossRefGoogle Scholar
  49. Knoerzer, K., Regier, M., & Schubert, H. (2005). Measuring temperature distributions during microwave processing. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 243–263). Boca Ratón: CRC Press.CrossRefGoogle Scholar
  50. Kouchakzadeh, A., & Shafeei, S. (2010). Modeling of microwave-convective drying of pistachios. Energy Conversion and Management, 51(10), 2012–2015.CrossRefGoogle Scholar
  51. Kumar, P., Coronel, P., Simunovic, J., & Sandeep, K. P. (2007a). Feasibility of aseptic processing of a low-acid multiphase food product (salsa con queso) using a continuous flow microwave system. Journal of Food Science, 72(3), E121–E124.CrossRefGoogle Scholar
  52. Kumar, P., Coronel, P., Simunovic, J., Truong, V. D., & Sandeep, K. P. (2007b). Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions. Journal of Food Science, 72(4), E117–E183.CrossRefGoogle Scholar
  53. Kumar, P., Coronel, P., Simunovic, J., & Sandeep, K. P. (2008a). Thermophysical and dielectric properties of salsa con queso and its vegetable ingredients at sterilization temperatures. International Journal of Food Properties, 11, 112–126.CrossRefGoogle Scholar
  54. Kumar, P., Coronel, P., Truong, V. D., Simunovic, J., Swartzel, K. R., Sandeep, K. P., et al. (2008b). Overcoming issues associated with the scale-up of a continuous flow microwave system for aseptic processing of vegetable purees. Food Research International, 41, 454–461.CrossRefGoogle Scholar
  55. Lombraña, J. I., Rodríguez, R., & Ruiz, U. (2010). Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innovative Food Science & Emerging Technologies, 11(4), 652–660.CrossRefGoogle Scholar
  56. Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567.CrossRefGoogle Scholar
  57. Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.CrossRefGoogle Scholar
  58. Megahey, E. K., McMinn, W. A. M., & Magee, T. R. A. (2005). Experimental study of microwave baking of Madeira cake batter. Food and Bioproducts Processing, 83(4), 277–287.CrossRefGoogle Scholar
  59. Meredith, R. (1998). Engineer’s handbook of industrial microwave heating. London: The Institution of Electrical Engineers.CrossRefGoogle Scholar
  60. Nebesny, E., & Budryn, G. (2003). Antioxidant activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. European Food Research and Technology, 217(2), 157–163.CrossRefGoogle Scholar
  61. Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 69–114). New York: Marcel Dekker.Google Scholar
  62. Pandit, R. B., Tang, J., Liu, F., & Mikhaylenko, G. (2007). A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition, 40, 3667–3676.CrossRefGoogle Scholar
  63. Parker, R. (2003). Introduction to food science. Albany: Delmar Thompson Learning.Google Scholar
  64. Picouet, P. A., Landl, A., Abadias, M., Castellari, M., & Viñas, I. (2009). Minimal processing of a Granny Smith apple puree by microwave heating. Innovative Food Science and Emerging Technologies., 10(4), 545–550.CrossRefGoogle Scholar
  65. Pilli, T., Giuliani, R., Derossi, A., & Severini, C. (2009). Study of cooking quality of spaguetti dried through microwaves and comparison with hot air dried pasta. Journal of Food Engineering, 95(3), 453–459.CrossRefGoogle Scholar
  66. Ratanadecho, P., Aoki, K., & Akahori, M. (2002). A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties). Applied Mathematical Modeling, 26, 449–472.CrossRefGoogle Scholar
  67. Ruíz-Díaz, G., Martínez-Monzó, J., Fito, P., & Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies, 4(2), 203–209.CrossRefGoogle Scholar
  68. Sabliov, C. M., Boldor, D., Coronel, P., & Sanders, T. H. (2008). Continuous microwave processing of peanut beverages. Journal of Food Processing and Preservation., 32, 935–945.CrossRefGoogle Scholar
  69. Salvi, D., Ortego, J., Arauz, C., Sabliov, C. M., & Boldor, D. (2009). Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating. Journal of Food Engineering, 93, 149–157.CrossRefGoogle Scholar
  70. Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453.CrossRefGoogle Scholar
  71. Seyhun, N., Ramaswamy, H., Sumnu, G., Sahin, S., & Ahmed, J. (2009). Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. Journal of Food Engineering, 92(3), 339–344.CrossRefGoogle Scholar
  72. Sharma, G. P., & Prasad, S. (2006). Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering, 75, 441–446.CrossRefGoogle Scholar
  73. Silva, F. A., Marsaioli, A., Jr., Maximo, G. J., Silva, M. A. A. P., & Gonçalves, L. A. G. (2006). Microwave assisted drying of macadamia nuts. Journal of Food Engineering, 77(3), 550–558.CrossRefGoogle Scholar
  74. Singh, R. P., & Heldman, D. R. (2009). Introduction to food engineering (4th ed.). Burlington: Academic Press.Google Scholar
  75. Sosa-Morales, M. E., Tiwari, G., Wang, S., Tang, J., García, H. S., & López-Malo, A. (2009). Dielectric heating as a potential post-harvest treatment of disinfesting mangoes I: Relation between dielectric properties and ripening. Biosystems Engineering, 113, 297–303.CrossRefGoogle Scholar
  76. Sosa-Morales, M.E., Méndez-Obregón, M. & López-Malo, A. (2010a). Microwave thermal treatment for an ostrich meat ready-to-serve dinner. ASABE Annual International Meeting, 20–23 June 2010, Pittsburgh, Pennsylvania. Paper Number 1009949.Google Scholar
  77. Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010b). Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT-Food Science and Technology, 43, 1169–1179.CrossRefGoogle Scholar
  78. Suárez, C., Viollaz, P. E., Rovedo, C. O., Tolaba, M. P., & Haros, M. (2000). Improved drying techniques and microwave food processing. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 175–188). Gaithersburg: Aspen.Google Scholar
  79. Sumnu, G., & Sahin, S. (2005). Recent developments in microwave heating. In D.-W. Sun (Ed.), Emerging technologies for food processing (pp. 419–444). San Diego: Elsevier.CrossRefGoogle Scholar
  80. Sumnu, G., Sahin, S., & Sevimli, M. (2005a). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150–155.CrossRefGoogle Scholar
  81. Sumnu, G., Turabi, E., & Oztop, M. (2005b). Drying of carrots in microwave and halogen lamp-microwave combination ovens. LWT-Food Science and Technology, 38(5), 549–553.CrossRefGoogle Scholar
  82. Taher, B. J., & Farid, M. M. (2001). Cyclic microwave thawing of frozen meat: experimental and theorical investigation. Chemical Engineering and Processing, 40(4), 379–389.CrossRefGoogle Scholar
  83. Tajchakavit, S., Ramaswamy, H. S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectinmethylesterase in orange juice under batch mode heating conditions. Lebensmittel-Wissenschaft und-Technologie, 30(1), 85–93.CrossRefGoogle Scholar
  84. Tajchakavit, S., Ramaswamy, H. S., & Fustier, P. (1998). Enhanced destruction of spoilage microorganism in apple juice during continuous flow microwave heating. Food Research International, 31(10), 713–722.CrossRefGoogle Scholar
  85. Tang, J., Hao, F., & Lau, M. (2002). Microwave heating in food processing. In X. Harrison & J. Tang (Eds.), Advances in bioprocessing engineering (pp. 1–44). New York: World Scientific.CrossRefGoogle Scholar
  86. Tang, Z., Mikhaylenko, G., Liu, F., Mah, J., Pandit, R., Younce, F., et al. (2008). Microwave sterilization of sliced beef in gravy in 7-oz trays. Journal of Food Engineering, 89, 375–383.CrossRefGoogle Scholar
  87. Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), 482–489.CrossRefGoogle Scholar
  88. Uysal, N., Summu, G., & Sahin, S. (2009). Optimization of microwave-infrared roasting of hazelnut. Journal of Food Engineering, 90(2), 255–261.CrossRefGoogle Scholar
  89. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—A review. Food and Bioprocess Technology, 3, 161–171.CrossRefGoogle Scholar
  90. Vais, A. E., Palazoglu, T. K., Sandeep, K. P., & Daubert, C. R. (2002). Rheological characterization of carboxymethylcellulose solution under aseptic processing conditions. Journal of Food Process Engineering, 25(1), 41–61.CrossRefGoogle Scholar
  91. Valero, E., Villamiel, M., Sanz, J., & Martínez-Castro, I. (2000). Chemical and sensorial changes in milk pasteurised by microwave and conventional systems during cold storage. Food Chemistry, 70, 77–81.CrossRefGoogle Scholar
  92. Varith, J., Dijkanarukkul, P., Achariyaviriya, A., & Achariyaviriya, S. (2007). Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81(2), 459–468.CrossRefGoogle Scholar
  93. Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18.CrossRefGoogle Scholar
  94. Venkatesh, M. S., & Raghavan, G. S. V. (2005). An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 47, 7.15–7.30.Google Scholar
  95. Villamiel, M., Corzo, N., Martínez-Castro, I., & Olano, A. (1996). Chemical changes during microwave treatment of milk. Food Chemistry, 56(4), 385–388.CrossRefGoogle Scholar
  96. Wang, W., & Guohua, C. (2005). Heat and mass transfer model of dielectric-material-assisted microwave freeze drying of skim milk with hygroscopic effect. Chemical Engineering Science, 60(23), 6542–6550.CrossRefGoogle Scholar
  97. Wang, Y., & Wang, J. (2009). Computer simulation of radio frequency heating. In S. Jun & J. M. Irudayaraj (Eds.), Food processing operations modeling (pp. 81–112). Boca Ratón: CRC Press.Google Scholar
  98. Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57, 257–268.CrossRefGoogle Scholar
  99. Wang, R., Zhang, M., & Mujumdar, A. S. (2010a). Effect of food ingredient on microwave freeze drying of instant vegetable soup. LWT-Food Science and Technology, 43(7), 1144–1150.CrossRefGoogle Scholar
  100. Wang, R., Zhang, M., & Mujumdar, A. S. (2010b). Effects of vacuum and microwave freeze drying on microstructure and quality of potato slices. Journal of Food Engineering, 101(2), 131–139.CrossRefGoogle Scholar
  101. Yam, K. L., & Lai, C. C. (2006). Microwable frozen food or meals. In Y. H. Hui (Ed.), Handbook of food science, technology and engineering (pp. 113-1–113-8). Boca Ratón: CRC Press.Google Scholar
  102. Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64, 445–453.CrossRefGoogle Scholar
  103. Yuan, F., & Pal, R. (1995). Measurement of solids concentration in aqueous slurries using a microwave technique. Chemical Engineering Science, 50(22), 3525–3533.CrossRefGoogle Scholar
  104. Zhao, S., Xiong, S., Qiu, C., & Xu, Y. (2007). Effect of microwaves on rice quality. Journal of Stored Products Research, 43(4), 496–502.CrossRefGoogle Scholar
  105. Zhu, J., Kuznetsov, A. V., & Sandeep, K. P. (2007). Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). International Journal of Thermal Sciences, 46, 328–341.CrossRefGoogle Scholar
  106. Zook, D. E., Macku, C., & Deming, D. (1995). Effect of microwave heating on roasted nut flavor. Developments in Food Science, 37, 1493–1518.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Claudia Salazar-González
    • 1
  • M. Fernanda San Martín-González
    • 2
  • Aurelio López-Malo
    • 1
  • Maria E. Sosa-Morales
    • 1
  1. 1.Departamento de Ingeniería Química, Alimentos y AmbientalUniversidad de las Américas PueblaCholulaMexico
  2. 2.Department of Food SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations