Food and Bioprocess Technology

, Volume 5, Issue 7, pp 2728–2738 | Cite as

Mitigation of Major Peanut Allergens by Pulsed Ultraviolet Light

  • Wade W. Yang
  • Nasson R. Mwakatage
  • Renee Goodrich-Schneider
  • Kathiravan Krishnamurthy
  • Taha M. Rababah
Original Paper

Abstract

Peanut allergy represents one of the most severe IgE-mediated reactions with food, but to date, the only effective way to prevent peanut allergy is total avoidance. If allergens could be mitigated during food processing before a product reaches the consumer, this would substantially lessen the food allergy problem. The efficacy of pulsed ultraviolet light (PUV), a novel food processing technology, on reducing peanut allergens, was examined. This study revealed for the first time that PUV was also capable of deactivating Ara h 2, the most potent allergenic protein of peanut. Protein extracts from raw and roasted peanuts were treated for 2, 4, and 6 min and peanut butter slurry was treated for 1, 2, and 3 min in a Xenon Steripulse XL 3000® PUV system. The distance from the central axis of the lamp was varied at 10.8, 14.6, and 18.2 cm. The SDS–PAGE showed a reduction in the protein band intensity for Ara h 1, Ara h 2, and Ara h 3 at the energy levels ranging from 111.6 to 223.2 J/cm2. Reduction of the protein band intensity for peanut allergens increased with treatment time but decreased with increased distance from the PUV lamp. The ELISA for peanut extracts and peanut butter slurry showed a reduction in IgE binding of up to 12.9- and 6.7-folds, respectively, compared to control.

Keywords

Peanut Peanut butter Allergen Ara h 1 Ara h 2 Ara h 3 Pulsed UV light Non-thermal IgE binding 

References

  1. AOAC. (1990). Official Methods of Analysis (15th ed., p. 949). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  2. Astwood, J. D., & Fuchs, R. L. (1996). Preventing food allergies – emerging technologies. Trends in Food Science and Technology, 7, 219–226.CrossRefGoogle Scholar
  3. Bargman, T. J., Rupnow, J. H., & Taylor, S. L. (1992). IgE binding Proteins in Almonds (Prunus amygdalus); Identification by Immunoblotting with sera from Almond Allergic Adults. Journal of Food Science, 57(3), 717–720.CrossRefGoogle Scholar
  4. Beyer, K., Morrow, E., Li, X. M., Bardina, L., Bannon, G. A., Burks, A. W., et al. (2001). Effects of cooking methods on peanut allergenicity. The Journal of Allergy and Clinical Immunology, 107, 1077–1081.CrossRefGoogle Scholar
  5. Beyer, K., Ellman-Gunther, L., Jàrvinen, K.-M., Wood, R. A., Hourihane, J., & Sampson, H. A. (2003). Measurement of peptide-specific IgE as an additional tool in identifying patients with clinical reactivity to peanuts. J Allergy Clin Immunol, 112(1), 202–207.CrossRefGoogle Scholar
  6. Breiteneder, H., & Mills, E. N. C. (2005). Plant food allergens – structural and functional aspects of allergenicity. Biotechnology Advances, 23(2005), 395–399.CrossRefGoogle Scholar
  7. Burks, W., Bannon, G. A., Sicherer, S., & Sampson, H. A. (1999). Peanut induced anaphylactic reactions. International Archives of Allergy and Immunology, 119(3), 165–172.CrossRefGoogle Scholar
  8. Byun, M. W., Kim, J. H., Lee, J. W., Park, J. W., Hong, C. S., & Kang, I. J. (2000). Effects of gamma radiation on the conformational and antigenic properties of a heat-stable major allergen in brown shrimp. Journal of Food Protection, 63, 940–944.Google Scholar
  9. Chu, Y., Faustinelli, P., Ramos, M. L., Hajduch, M., Stevenson, S., Thelen, J. J., et al. (2008). Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. Journal of Agricultural and Food Chemistry, 56(23), 11225–11233.CrossRefGoogle Scholar
  10. Chung, S.-Y., Yang, W., & Krishnamurthy, K. (2008). Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. Journal of Food Science, 73(5), 400–404.CrossRefGoogle Scholar
  11. Chung, S.-Y., Kato, Y., & Champagne, E. T. (2005). Polyphenol oxidase/caffeic acid may reduce the allergenic properties of peanut allergens. Journal of the Science of Food and Agriculture, 85, 2631–2637.CrossRefGoogle Scholar
  12. Chung, S., & Champagne, E. T. (2008). Using phenolic compounds the reduce the allergenic properties of peanut extracts and peanut butter slurry. The Journal of Allergy and Clinical Immunology, 121(2), 249.CrossRefGoogle Scholar
  13. Davis, P. J., James, D. C., & Smales, C. M. (2001). How can thermal processing modify the antigenicity of proteins? Allergy, 56, 56–60.CrossRefGoogle Scholar
  14. de Leon, M. P., Drew, A. C., Glaspole, I. N., Suphioglu, C., O’Hehir, R. E., & Rolland, J. M. (2007). IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Journal of Molecular Immunology, 44, 463–471.CrossRefGoogle Scholar
  15. Dodo, H., Konan, K., & Vuquez, O. (2005). A genetic engineering strategy to eliminate peanut allergy. Current Allergy and Asthma Reports, 5(1), 67–73.CrossRefGoogle Scholar
  16. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed light system as a novel food decontamination technology: a review. Canadian Journal of Microbiology, 53, 813–821.CrossRefGoogle Scholar
  17. Gennadios, A., Rhim, J. W., Handa, A., Weller, C. L., & Hanna, M. A. (1998). Ultraviolet radiation affects the physical and molecular structure of Soy protein films. Journal of Food Science, 63(2), 1–4.Google Scholar
  18. Gómez-López, V. M., Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science & Technology, 18(9), 464–473.CrossRefGoogle Scholar
  19. Herian, A. M., Taylor, S. T., & Bush, R. K. (1993). Allergenic reactivity of various soybean products as determined by RAST inhibition. Journal of Food Science, 58(2), 385–388.CrossRefGoogle Scholar
  20. Kleber-Janke, T., Crameri, R., Scheurer, S., Vieths, S., & Becker, W. (2001). Patient-tailored cloning of allergens by phage display: Peanut (Arachis hypogaea) profilin, a food allergen derived from a rare mRNA. Journal of Chromatography, B: Biomedical Sciences and Applications, 756, 295–305.CrossRefGoogle Scholar
  21. Konan, K. N., Viquez, O. M., & Dodo, H. W. (2003). Towards the development of hypoallergenic peanut through genetic transformation. Applied Biotechnology, Food Science and Policy, 1(3), 159–168.Google Scholar
  22. Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.CrossRefGoogle Scholar
  23. Krishnamurthy, K. (2006). Decontamination of milk and water by Pulsed UV-Light and Infrared heating (pp72–81). PhD Dissertation. Pennsylvania State University.Google Scholar
  24. Krishnamurthy, K., Irudayaraj, J., Jun, S., Demirci, A., & Yang, W. (2008). UV pasteurization of food materials. In S. Jun & J. Irudayaraj (Eds.), Food Processing Operations and Modeling (2nd ed.). New York: CRC.Google Scholar
  25. Lee, S., Oh, S., Jang, D., Lee, J., & Byun, M. (2008). Evaluation of Reduced Allergenicity of Peanut Extract by Gamma Irradiation in Murine Model of Peanut Allergy. Journal of Allergy and Clinical Immunology., 121(2), S184.CrossRefGoogle Scholar
  26. Lee, J. W., Kim, J. H., Yook, H. S., Kang, K. K., Lee, S. Y., Hwang, H. J., et al. (2001). Effects of gamma radiation on the allergenic and antigenic properties of milk proteins. Journal of Food Protection, 64(2), 272–276.Google Scholar
  27. Maleki, J. H., Viquez, O. A., Jacks, T., Dodo, H., Champagne, E. T., Chung, S. Y., et al. (2003). The major peanut allergen Arah2 functions as a Trypsin inhibitor and Roasting enhances this function. The Journal of Allergy and Clinical Immunology, 112(1), 190–193.CrossRefGoogle Scholar
  28. Maleki, S. J., Chung, S. Y., Champagne, E. T., & Raufman, J. P. (2000). The effects of roasting on the allergenic properties of peanut proteins. The Journal of Allergy and Clinical Immunology, 106, 763–768.CrossRefGoogle Scholar
  29. Oms-Oliu, G., Martin-Belloso, G. O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A Review. Food and Bioprocess Technology, 3(1), 13–23.CrossRefGoogle Scholar
  30. Perry, T. T., Conover-Walker, M. K., Pomes, A., Chapman, M. D., & Wood, R. E. (2004). Distribution of peanut allergen in the environment. The Journal of Allergy and Clinical Immunology, 113(5), 973–976.CrossRefGoogle Scholar
  31. Pomés, A., Helm, R. M., Bannon, G. A., Burks, A. W., Tsay, A., & Chapman, M. D. (2003). Monitoring peanut allergens in foods by measuring Ara h 1. Journal of Allergy and Clinical Immunology, 111(3), 640–645.CrossRefGoogle Scholar
  32. Shriver, S., & Yang, W. (2011). Thermal and non-thermal methods for food allergen control. Food Engineering Reviews, 3(1), 26–43.CrossRefGoogle Scholar
  33. Sicherer, S. H., & Sampson, H. A. (2007). Peanut allergy: emerging concepts and approaches for an apparent epidemic. The Journal of Allergy and Clinical Immunology, 120(3), 491–503.CrossRefGoogle Scholar
  34. Takeshita, K., Shibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Erihara, K., et al. (2003). Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology, 85, 151–158.CrossRefGoogle Scholar
  35. Viquez, O. M., Konan, K. N., & Dodo, H. W. (2003). Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Molecular Immunology, 40, 565–571.CrossRefGoogle Scholar
  36. Yang, W., Chung, S.-Y., Ajayi, O., Krishnamurthy, K., Konan, K., & Goorich-Schneider, R. (2010). Use of pulsed ultraviolet light to reduce the allergenic potency of soybean extracts. International Journal of Food Engineering, 6(3), 11.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Wade W. Yang
    • 1
  • Nasson R. Mwakatage
    • 2
  • Renee Goodrich-Schneider
    • 1
  • Kathiravan Krishnamurthy
    • 3
  • Taha M. Rababah
    • 4
  1. 1.Department of Food Science and Human NutritionUniversity of FloridaGainesvilleUSA
  2. 2.Department of Food and Animal SciencesAlabama A&M UniversityNormalUSA
  3. 3.National Center for Food Safety and Technology, Illinois Institute of TechnologySummit-ArgoUSA
  4. 4.Department of Nutrition and Food TechnologyJordan University of Science and TechnologyIrbidJordan

Personalised recommendations