Skip to main content

Antioxidant-Rich Extract from Dehydrated Seabuckthorn Berries by Supercritical Carbon Dioxide Extraction

Abstract

Seabuckthorn (Hippophae rhamnoides L.) berry oil having high nutraceutical, cosmeceutical, and therapeutic activity has been extracted from dried seabuckthorn (SBT) whole berry powder using supercritical carbon dioxide (SC-CO2), a green process for extraction of bioactives. The SC-CO2 process was optimized using Box–Behnken design. Three SC-CO2 parameters namely extracting pressure, extracting temperature, and time of extraction were examined. The optimal SC-CO2 conditions were determined, and the quadratic response surfaces were drawn from the mathematical models. A maximum recovery of 85.12% tocopherol, 71.73% carotene, and an EC50 of 29.02 mg/ml (from DPPH assay) was obtained after SC-CO2 extraction at 44 °C, 345 bar, and run time of 80 min. Use of methanol as an entrainer at 30% v/w of SBT berry at optimized conditions further increased the extraction efficiency and the potency. This extract can be used for varied nutraceutical, cosmeceutical, and pharmaceutical applications.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. AACC. (1976). Approved methods of American Association of Cereal Chemists, method 44–15 A, St. Paul- MN.

  2. AOAC. (1975). Official method of analysis. Association of Analytical Chemists, Washington, D.C., 12th Ed.

  3. Andersson, S. C., Olsson, M. E., Johansson, E., & Rumpunen, K. (2009). Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. Journal of Agricultural and Food Chemistry, 57, 250–258.

    Article  CAS  Google Scholar 

  4. Arimboor, R., Venugopalan, W., Arumughan, C., & Sawhney, R. (2006). Integrated processing of fresh Indian sea buckthorn (Hippophae rhamnoides) berries and chemical evaluation of products. Journal of the Science of Food and Agriculture, 86(14), 2345–2353.

    Article  CAS  Google Scholar 

  5. Bal L. M., Meda V., Naik S. N., & Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Research International, doi:http://10.1016/j.foodres.2011.03.002

  6. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  7. Bruno, T., Castro, C. A. N., Hamel, J. F. P., & Palavra, A. M. F. (1993). Supercritical fluid extraction of biological products. In J. F. Kennedy & J. M. S. Cabral (Eds.), Recovery processes for biological materials (pp. 303–354). Chichester: Wiley.

    Google Scholar 

  8. Chauhan, A. S., Negi, P. S., & Ramteke, R. S. (2007). Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia, 78, 590–592.

    Article  Google Scholar 

  9. Cossuta, D., Simandi, B., Hohmann, J., Doleschall, F., & Keve, T. (2007). Supercritical carbon dioxide extraction of sea buckthorn (Hippophae rhamnoides L.) pomace. Journal of the Science of Food and Agriculture, 87(13), 2472–2481.

    Article  CAS  Google Scholar 

  10. Dorhoi, A., Dobrean, V., Zǎhan, M., & Virag, P. (2006). Modulatory effects of several herbal extracts on avian peripheral blood cell immune responses. Phytotherapy Research, 20, 352–358.

    Article  CAS  Google Scholar 

  11. Geetha, S., Jayamurthy, P., Pal, K., Pandey, S., Kumar, R., & Sawhney, R. C. (2008). Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. Journal of the Science of Food and Agriculture, 88, 1592–1597.

    Article  CAS  Google Scholar 

  12. Granato, D., Branco, G. F., & Calado, V. M. (2011). Experimental design and application of response surface methodology for process modelling and optimization: A review. Food Research International. doi:10.1016/j.foodres.2010.12.008.

    Google Scholar 

  13. Grey, C., Widén, C., Adlercreutz, P., Rumpunen, K., & Duan, R. (2010). Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chemistry, 120, 1004–1010.

    Article  CAS  Google Scholar 

  14. Guliyev, V., Gulb, M., & Yildirim, A. (2004). Hippophae rhamnoides L.: Chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effects. Journal of Chromatography B, 812, 291–307.

    CAS  Google Scholar 

  15. Kaljurand, M., Gorbatsova, J., Lougas, T., & Vokk, R. (2007). Comparison of the contents of various antioxidants of sea buckthorn berries using CE. Electrophoresis, 28, 4136–4142.

    Article  Google Scholar 

  16. Lamaison, J. L. C., & Carnet, A. (1990). Teneurs en principaux flavonoides des fleurs de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret D. C) en fonction de la vegetation. Pharmaceut Acta Helve, 65, 315–320.

    CAS  Google Scholar 

  17. Larmo, P. S., Jarvinen, R. L., Setala, N. L., Yang, B., Viitanen, M. H., Engblom, J. R. K., et al. (2010). Oral sea buckthorn oil attenuates tear film osmolarity and symptoms in individuals with dry eye. The Journal of Nutrition, 140, 1462–1468.

    Article  CAS  Google Scholar 

  18. Michel, T., Destandau, E., & Elfakir, C. (2011). Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophae rhamnoides L.) berries: Pressurised solvent-free microwave assisted extraction. Food Chemistry, 126, 1380–1386.

    Article  CAS  Google Scholar 

  19. Nemtanu, M. R., Mineal, R., Mazliu, E., Setnic, S., Mitru, E., Balotescu, C., et al. (2009). Effects of ionizing radiation on the antioxidant and antimicrobial activities of sea buckthorn oil. Acta Horticulture, 826, 255–260.

    CAS  Google Scholar 

  20. Padmavathi, B., Upreti, M., Singh, V., Rao, A. R., Singh, R. P., & Rath, P. C. (2005). Chemoprevention by Hippophae rhamnoides: Effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor. Nutrition and Cancer, 51, 59–67.

    Article  Google Scholar 

  21. Pereira, R. N., & Vicente, E. E. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43, 1936–1943.

    Article  Google Scholar 

  22. Périno-Issartier, S., Zill-e-Huma, Abert-Vian, M., & Chemat, F. (2010). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, doi:10.1007/s11947-010-0438-x

  23. Ranjith, A., Sarin Kumar, K., Venugopalan, V. V., Arumugan, C., Sawhney, R. C., & Singh, V. (2006). Fatty acids, tocols and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoids, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. Journal of the American Oil Chemists' Society, 83, 359–364.

    Article  CAS  Google Scholar 

  24. Sajfrtová, M., Ličková, I., Wimmerová, M., Sovová, H., & Wimmer, Z. (2010). β-Sitosterol: Supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. International Journal of Molecular Sciences, 11, 1842–1850.

    Article  Google Scholar 

  25. Sharma, U. K., Sharma, K., Sharma, N., Sharma, A., Singh, H. P., & Sinha, A. K. (2008). Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). Journal of Agricultural and Food Chemistry, 56, 374–379.

    Article  CAS  Google Scholar 

  26. Shi, J., & Le Maguer, M. (2000). Lycopene in tomatoes: Chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition, 40, 1–42.

    Article  CAS  Google Scholar 

  27. Van der Velde, E. G., de Haan, W., & Liem, A. K. (1992). Supercritical fluid extraction of polychlorinated biphenyls and pesticides from soil. Comparison with other extraction methods. Journal of Chromatography A, 626, 135–143.

    Article  Google Scholar 

  28. Xu, X., Gao, Y., Liu, G., Wang, Q., & Zhao, J. (2008). Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophae rhamnoides L.) oil using response surface methodology. LWT–Food Science and Technology, 41, 1223–1231.

    CAS  Google Scholar 

  29. Yang, B. (2009). Sugars, acids, ethyl β-d-glucopyranose and a methyl inositol in sea buckthorn (Hippophae rhamnoides) berries. Food Chemistry, 112, 89–97.

    Article  CAS  Google Scholar 

  30. Yang, B., Kalimo, K. O., Tahvonen, R. L., Mattila, L. M., Katajisto, J. K., & Kallio, H. P. (2000). Effect of dietary supplementation with sea buckthorn (Hippophae rhamnoides) seed and pulp oils on the fatty acid composition of skin glycerophospholipids of patients with atopic dermatitis. The Journal of Nutritional Biochemistry, 11, 338–340.

    Article  CAS  Google Scholar 

  31. Yang, B., Ahotupa, M., Määttä P., & Kallio, H. (2011a). Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Research International, doi:http://10.1016/j.foodres.2011.02.025

  32. Yang, B., Zheng, J., & Kallio, H. (2011). Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophae rhamnoides) berries. Food Chemistry, 125, 388–396.

    Article  CAS  Google Scholar 

  33. Zheng, J., Kallio, H., Linderborg, K., & Yang, B. (2010). Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophae rhamnoides ssp. sinensis) with special reference to influence of latitude and altitude. Food Research International, doi:http://10.1016/j.foodres.2010.10.007

  34. Zu, Y., Li, C., Fu, Y., & Zhao, C. (2006). Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis, 41, 714–719.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by Department of Biotechnology, Government of India, New Delhi, is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rekha S. Singhal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kagliwal, L.D., Pol, A.S., Patil, S.C. et al. Antioxidant-Rich Extract from Dehydrated Seabuckthorn Berries by Supercritical Carbon Dioxide Extraction. Food Bioprocess Technol 5, 2768–2776 (2012). https://doi.org/10.1007/s11947-011-0613-8

Download citation

Keywords

  • Seabuckthorn
  • Supercritical fluid extraction
  • Box–Behnken
  • Entrainer
  • Antioxidant
  • EC50