Skip to main content
Log in

Biotechnological Advances and Challenges of Tannase: An Overview

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Tannase is one of the most versatile biocatalysts and plays an important role in a wide range of bioconversion reactions under protein-precipitating conditions. A comprehensive and illustrative review on the applied aspects of microbial tannases in modern biotechnological practices is presented. After a brief description of different substrates of tannases, fundamental biotechnological and catalytic aspects are reviewed and discussed to illustrate the pivotal role of tannases in the food and bioprocess industry. An emphasis on the biotechnological advances and challenges of tannase study is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TAH:

Tannin acyl hydrolase

HHDP:

Hexahydrodiphenic acid

HOHN:

3-Hydroxy-5-oxohexanoate

CoA:

Coenzyme A

SLF:

Submerged liquid fermentation

SSF:

Solid state fermentation

MSSF:

Modified solid state fermentation

KEX-II:

Kex2 endopeptidase

DNA:

Deoxyribonucleic acid

PCR:

Polymerase chain reaction

DEAE:

Diethylaminoethyl cellulose

References

  • Abdel-Naby, M. A., Sherif, A. A., El-Tanash, A. B., & Mankarios, A. T. (1999). Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 87(1), 108–114.

    CAS  Google Scholar 

  • Abdelwahed, A., Bouhlel, I., Skandrani, I., Valenti, K., Kadri, M., Guiraud, P., et al. (2007). Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chemico-Biological Interactions, 165(1), 1–13.

    CAS  Google Scholar 

  • Adachi, O., Watanabe, M., & Yamada, H. (1968). Studies on fungal tannase Part II. Physicochemical properties of tannase of Aspergillus flavus. Agricultural and Biological Chemistry, 32(9), 1079–1085.

    CAS  Google Scholar 

  • Adachi, O., Watanabe, M., & Yamada, H. (1971). Studies of fungal tannase (III) inhibition of tannase by isopropylfluorophosphate. Journal of Fermentation Technology, 49(3), 230–234.

    CAS  Google Scholar 

  • Aguilar, C. N., & Gutiérrez-Sánchez, G. (2001). Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7(5), 373–382.

    CAS  Google Scholar 

  • Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001a). Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: Influence of glucose and tannic acid. Journal of Industrial Microbiology & Biotechnology, 26(5), 296–302.

    CAS  Google Scholar 

  • Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001b). Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochemistry, 36(6), 565–570.

    CAS  Google Scholar 

  • Aguilar, C. N., Favela-Torres, E., Viniegra-González, G., & Augur, C. (2002). Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Applied Biochemistry and Biotechnology, 102–103(1–6), 407–414.

    Google Scholar 

  • Aguilar, C. N., Rodríguez, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragán, L. A., et al. (2007). Microbial tannases: Advances and perspectives. Applied Microbiology and Biotechnology, 76(1), 47–59.

    CAS  Google Scholar 

  • Aguilera-Carbó, A., Augur, C., Prado-Barragán, L., Favela-Torres, E., & Aguilar, C. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology, 78(2), 189–199.

    Google Scholar 

  • Aissam, H., Errachidi, F., Penninckx, M. J., Merzouki, M., & Benlemlih, M. (2005). Production of tannase by Aspergillus niger HA37 growing on tannic acid and Olive Mill Waste Waters. World Journal of Microbiology & Biotechnology, 21(4), 609–614.

    CAS  Google Scholar 

  • Ajay Kumar, R., Gunasekaran, P., & Lakshmanan, M. (1999). Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. Journal of Basic Microbiology, 39(3), 161–168.

    CAS  Google Scholar 

  • Albertse, E.H. (2002). Cloning, expresion and caracterization of tannase from Aspergillus species. M.Sc. Thesis, Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.

  • Aoki, K., Shinke, R., & Nishira, H. (1976a). Purification and some properties of yeast tannase. Agricultural and Biological Chemistry, 40(1), 79–85.

    CAS  Google Scholar 

  • Aoki, K., Shinke, R., & Nishira, H. (1976b). Chemical composition and molecular weight of yeast tannase. Agricultural and Biological Chemistry, 40(2), 297–302.

    CAS  Google Scholar 

  • Ayed, L., & Hamdi, M. (2002). Culture conditions of tannase production by Lactobacillus plantarum. Biotechnology Letters, 24(21), 1763–1765.

    CAS  Google Scholar 

  • Bajpai, B., & Patil, S. (1997). Induction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enzyme and Microbial Technology, 20(8), 612–614.

    CAS  Google Scholar 

  • Banerjee, D., & Pati, B. R. (2007). Optimization of tannase production by Aureobasidium pullulans DBS66. Journal of Microbiology and Biotechnology, 17(6), 1049–1053.

    CAS  Google Scholar 

  • Banerjee, D., Mahapatra, S., & Pati, B. R. (2007). Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Research Journal of Microbiology, 2(5), 462–468.

    CAS  Google Scholar 

  • Banerjee, D., Mondal, K. C., & Pati, B. R. (2007). Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiologica et Immunologica Hungarica, 54(2), 159–166.

    CAS  Google Scholar 

  • Barthomeuf, C., Regerat, F., & Pourrat, H. (1994). Production, purification and characterization of a tannase from Aspergillus niger LCF 8. Journal of Fermentation and Bioengineering, 77(3), 320–323.

    CAS  Google Scholar 

  • Batra, A., & Saxena, R. K. (2005). Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochemistry, 40(5), 1553–1557.

    CAS  Google Scholar 

  • Battestin, V., & Macedo, G. A. (2007). Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electronic Journal of Biotechnology, 10(2), 191–199.

    CAS  Google Scholar 

  • Beena, P. S., Soorej, M. B., Elyas, K. K., Bhat Sarita, G., & Chandrasekaran, M. (2010). Acidophilic tannase from marine Aspergillus awamori BTMFW032. Journal of Microbiology and Biotechnology, 20(10), 1403–1414.

    CAS  Google Scholar 

  • Belmares, R. E., Reyes-Vega, M. L., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., & Aguilar, C. N. (2003). Efecto de la fuente carbón sobre la producción de tanasa en dos cepas de Aspergillus niger. Revista Mexicana de Ingenieria Quimica, 2(1), 95–100.

    Google Scholar 

  • Belmares, R., Contreras-Esquivel, J. C., Rodriguez-Herrera, R., Coronel, A. R., & Aguilar, C. N. (2004). Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Science and Technology, 37(8), 857–864.

    CAS  Google Scholar 

  • Belur, P. D., Gopal, M., Nirmala, K. R., & Basavaraj, N. (2010a). Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC. Journal of Microbiology and Biotechnology, 20(4), 732–736.

    CAS  Google Scholar 

  • Belur, P. D., Mugeraya, G., & Kuppalu, N. R. (2010b). Temperature and pH stability of a novel cell-associated tannase of Serratia ficaria DTC. International Journal of Biotechnology and Biochemistry, 6(5), 667–674.

    Google Scholar 

  • Beverini, M., & Metche, M. (1990). Identification, purification, physiochemical properties of tannase from Aspergillus oryzae. Science des Aliments, 10, 807–816.

    CAS  Google Scholar 

  • Bhardwaj, R., Singh, B., & Bhat, T. K. (2003). Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. Journal of Basic Microbiology, 43(6), 449–461.

    CAS  Google Scholar 

  • Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins—A current perspective. Biodegradation, 9(5), 343–357.

    CAS  Google Scholar 

  • Böer, E., Bode, R., Mock, H. P., Piontek, M., & Kunze, G. (2009). Atan1p—An extracellular tannase from the dimorphic yeast Arxula adeninivorans: Molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast, 26(6), 323–337.

    Google Scholar 

  • Bradoo, S., Gupta, R., & Saxena, R. K. (1996). Screening of extracellular tannase-producing fungi: Development of a rapid and simple plate assay. The Journal of General and Applied Microbiology, 42(4), 325–329.

    CAS  Google Scholar 

  • Bradoo, S., Gupta, R., & Saxena, R. K. (1997). Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochemistry, 32(2), 135–139.

    CAS  Google Scholar 

  • Brune, A., & Schink, B. (1992). Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: Fermentation of trihydroxybenzenes to acetate via triacetic acid. Archives of Microbiology, 157(5), 417–424.

    CAS  Google Scholar 

  • Carretero-Accame, M. E. (2000). Compuestos fenólicos: Taninos. Panorama Actual del Medicamento, 24(235), 633–636.

    Google Scholar 

  • Cerda-Gómez, A., Contreras-Esquivel, JC., Reyes-Valdes, H., Rodríguez, R., & Aguilar, CN. (2006). Molecular characterization of Aspergillus strains producers of tannase. In Second International Congress on Food Science and Technology in Developing Countries, Saltillo, Coahuila, Mexico.

  • Chhokar, V., Sangwan, M., Beniwal, V., Nehra, K., & Nehra, K. S. (2010). Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Applied Biochemistry and Biotechnology, 160(8), 2256–2264.

    CAS  Google Scholar 

  • Chhokar, V., Seema, B. V., Salar, R., Nehra, K., Kumar, A., & Rana, J. (2010). Purification and characterization of extracellular tannin acyl hydrolase from Aspergillus heteromorphus MTCC 8818. Biotechnology and Bioprocess Engineering, 15(5), 793–799.

    CAS  Google Scholar 

  • Costa, A. M., Ribeiro, W. X., Kato, E., Monteiro, A. R. G., & Peralta, R. M. (2008). Production of tannase by Aspergillus tamarii in submerged cultures. Brazilian Archives of Biology and Technology, 51(2), 399–404.

    CAS  Google Scholar 

  • Cruz-Hernández, M., Contreras-Esquivel, J. C., Lara, F., & Rodríguez, R. (2005). Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Zeitschrift fur Naturforschung. Section C, Biosciences, 60(11–12), 844–848.

    Google Scholar 

  • Cruz-Hernández, M., Augur, C., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2006). Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technology and Biotechnology, 44(4), 541–544.

    Google Scholar 

  • Cruz-Hernández, M., Contreras, J. C., Lima, N., Teixeira, J., & Aguilar, C. N. (2009). Production of Aspergillus niger GH1 tannase using solid-state fermentation. Journal of Pure & Applied Microbiology, 3(1), 21–26.

    Google Scholar 

  • Curiel, J. A., Rodríguez, H., Acebrón, I., Mancheño, J. M., De Blanca, R. L., & Muñoz, R. (2009). Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. Journal of Agricultural and Food Chemistry, 57(14), 6224–6230.

    CAS  Google Scholar 

  • Curiel, J. A., Betancor, L., de las Rivas, B., Munoz, R., Guisan, J. M., & Fernandez-Lorente, G. (2010). Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of tannase from Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 58(10), 6403–6409.

    CAS  Google Scholar 

  • Deschamps, A. M., Mahoudeau, G., Conti, M., & Lebeault, J. M. (1980). Bacteria degrading tannic acid and related compounds. Journal of Fermentation Technology, 58(2), 93–97.

    CAS  Google Scholar 

  • Deschamps, A. M., Otuk, G., & Lebeault, J.-M. (1983). Production of tannase and degradation of chestnut tannin by bacteria. Journal of Fermentation Technology, 61(1), 55–59.

    CAS  Google Scholar 

  • Farias, G. M., Gorbea, C., Elkins, J. R., & Griffin, G. J. (1994). Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiological and Molecular Plant Pathology, 44(1), 51–63.

    CAS  Google Scholar 

  • Fernandez-Lorente, G., Bolivar, J. M., Rocha-Martin, J., Curiel, J. A., Muñoz, R., de las Rivas, B., et al. (2011). Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 128(1), 214–217.

    CAS  Google Scholar 

  • Field, J. A., & Lettinga, G. (1992). Biodegradation of tannins. In H. Sigel (Ed.), Metal ions in biological systems, vol 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes (pp. 61–97). New York: Marcel Dekker.

    Google Scholar 

  • Frutos, P., Hervas, G., Giraldez, F. J., & Mantecon, A. R. (2004). Review. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research, 2(2), 191–202.

    Google Scholar 

  • Ganga, P. S., Nandy, S. C., & Santappa, M. (1977). Effect of environmental factors on the production of fungal tannase. Leather Science, 24(1), 8–16.

    CAS  Google Scholar 

  • Goel, G., Puniya, A., Aguilar, C., & Singh, K. (2005). Interaction of gut microflora with tannins in feeds. Naturwissenschaften, 92(11), 497–503.

    CAS  Google Scholar 

  • Hamdy, H. S. (2008). Purification and characterisation of a newly isolated stable long-life tannase produced by F. subglutinans (Wollenweber and Reinking) Nelson et al. Journal of Pharmaceutical Innovation, 3(3), 142–151.

    Google Scholar 

  • Haslam, E., & Stangroom, J. E. (1966). The esterase and depsidase activities of tannase. The Biochemical Journal, 99(1), 28–31.

    CAS  Google Scholar 

  • Hatamoto, O., Watarai, T., Kikuchi, M., Mizusawa, K., & Sekine, H. (1996). Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene, 175(1–2), 215–221.

    CAS  Google Scholar 

  • Hota, S. K., Dutta, J. R., & Banerjee, R. (2007). Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues. Indian Journal of Biotechnology, 6(2), 200–204.

    CAS  Google Scholar 

  • Iibuchi, S., Minoda, Y., & Yamada, K. (1972). Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Aspergillus oryzae no. 7. Agricultural and Biological Chemistry, 36(9), 1553–1562.

    CAS  Google Scholar 

  • Imai, K., Mitsunaga, T., Takemoto, H., Yamada, T., Ito, S. I., & Ohashi, H. (2009). Extractives of Quercus crispula sapwood infected by the pathogenic fungi Raffaelea quercivora I: Comparison of sapwood extractives from noninfected and infected samples. Journal of Wood Science, 55(2), 126–132.

    CAS  Google Scholar 

  • Iwamoto, K., Tsuruta, H., Nishitaini, Y., & Osawa, R. (2008). Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917 T. Systematic and Applied Microbiology, 31(4), 269–277.

    CAS  Google Scholar 

  • Kar, B., & Banerjee, R. (2000). Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. Journal of Industrial Microbiology & Biotechnology, 25(1), 29–38.

    CAS  Google Scholar 

  • Kar, B., Banerjee, R., & Bhattacharyya, B. C. (1999). Microbial production of gallic acid by modified solid state fermentation. Journal of Industrial Microbiology & Biotechnology, 23(3), 173–177.

    CAS  Google Scholar 

  • Kar, B., Banerjee, R., & Bhattacharyya, B. C. (2003). Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochemistry, 38(9), 1285–1293.

    CAS  Google Scholar 

  • Kasieczka-Burnecka, M., Kuc, K., Kalinowska, H., Knap, M., & Turkiewicz, M. (2007). Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Applied Microbiology and Biotechnology, 77(1), 77–89.

    CAS  Google Scholar 

  • Khanbabaee, K., & Van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18(6), 641–649.

    CAS  Google Scholar 

  • Knudson, L. (1913). Tannic acid fermentation I. The Journal of Biological Chemistry, 14(3), 159–184.

    CAS  Google Scholar 

  • Kostinek, M., Specht, I., Edward, V. A., Pinto, C., Egounlety, M., Sossa, C., et al. (2007). Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. International Journal of Food Microbiology, 114(3), 342–351.

    CAS  Google Scholar 

  • Kumar, R., Sharma, J., & Singh, R. (2007). Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiological Research, 162(4), 384–390.

    CAS  Google Scholar 

  • Lekha, P. K., & Lonsane, B. K. (1994). Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface an submerged fermentations. Process Biochemistry, 29(6), 497–503.

    CAS  Google Scholar 

  • Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. In S. Neidleman & A. Laskin (Eds.), Advances in applied microbiology 44 (pp. 215–260). San Diego: Academic.

    Google Scholar 

  • Lewis, J. A., & Starkey, R. L. (1969). Decomposition of plant tannins by some soil microorganism. Soil Science, 107(4), 235–340.

    CAS  Google Scholar 

  • Lu, M. J., Chu, S. C., Yan, L., & Chen, C. (2009). Effect of tannase treatment on protein-tannin aggregation and sensory attributes of green tea infusion. LWT Food Science and Technology, 42(1), 338–342.

    CAS  Google Scholar 

  • Mahapatra, S., & Banerjee, D. (2009). Extracellular tannase production by endophyitc Hyalopus sp. Journal of General and Applied Microbiology, 55(3), 255–259.

    CAS  Google Scholar 

  • Mahendran, B., Raman, N., & Kim, D. J. (2006). Purification and characterization of tannase from Paecilomyces variotii: Hydrolysis of tannic acid using immobilized tannase. Applied Microbiology and Biotechnology, 70(4), 444–450.

    CAS  Google Scholar 

  • Makkar, H. P. S., Singh, B., & Kamra, D. N. (1994). Biodegradation of tannins in oak (Quercus incana) leaves by Sporotrichum pulverulentum. Letters in Applied Microbiology, 18(1), 39–41.

    CAS  Google Scholar 

  • Mata-Gómez, M. A., Rodríguez, L. V., Ramos, E. L., Renovato, J., Cruz-Hernández, M. A., Rodríguez, R., et al. (2009). A novel tannase from the xerophilic fungus Aspergillus niger GH1. Journal of Microbiology and Biotechnology, 19(9), 987–996.

    Google Scholar 

  • Matthews, A., Grbin, P. R., & Jiranek, V. (2006). A survey of lactic acid bacteria for enzymes of interest to oenology. Australian Journal of Grape and Wine Research, 12(3), 235–244.

    CAS  Google Scholar 

  • McSweeney, C. S., Palmer, B., McNeill, D. M., & Krause, D. O. (2001). Microbial interactions with tannins: Nutritional consequences for ruminants. Animal Feed Science and Technology, 91(1–2), 83–93.

    CAS  Google Scholar 

  • Mingshu, L., Kai, Y., Qiang, H., & Dongying, J. (2006). Biodegradation of gallotannins and ellagitannins. Journal of Basic Microbiology, 46(1), 68–84.

    Google Scholar 

  • Mondal, K. C., Banerjee, R., & Pati, B. R. (2000). Tannase production by Bacillus licheniformis. Biotechnology Letters, 22(9), 767–769.

    CAS  Google Scholar 

  • Mondal, K. C., Banerjee, D., Banerjee, R., & Pati, B. R. (2001). Production and characterization of tannase from Bacillus cereus KBR9. The Journal of General and Applied Microbiology, 47(5), 263–267.

    CAS  Google Scholar 

  • Mukherjee, G., & Banerjee, R. (2006). Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World Journal of Microbiology & Biotechnology, 22(3), 207–212.

    CAS  Google Scholar 

  • Murugan, K., & Al-Sohaibani, S. A. (2010). Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTTC 9628. Research Journal of Microbiology, 5(4), 262–271.

    CAS  Google Scholar 

  • Murugan, S., Uma Devi, P., Mahesh, P., Suja, S., & Mani, K. R. (2008). Production of tannase by Citrobacter freundii under solid state fermentation and its application in fruit juices debittering. Biosciences, Biotechnology Research Asia, 5(1), 301–306.

    CAS  Google Scholar 

  • Naidu, R. B., Saisubramanian, N., Selvakumar, D., Janardhanan, S., & Puvanakrishnan, R. (2008). Partial purification of tannase from Aspergillus foetidus by aqueous two phase extraction and its characterization. Current Trends in Biotechnology and Pharmacy, 2(1), 201–207.

    CAS  Google Scholar 

  • Nelson, K. A., Schofield, P., & Zinder, S. (1995). Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolysable tannins. Applied and Environmental Microbiology, 61(9), 3293–3298.

    CAS  Google Scholar 

  • Nishitani, Y., Sasaki, E., Fujisawa, T., & Osawa, R. (2004). Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Systematic and Applied Microbiology, 27(1), 109–117.

    CAS  Google Scholar 

  • Noguchi, N., Ohashi, T., Shiratori, T., Narui, K., Hagiwara, T., Ko, M., et al. (2007). Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. Journal of Gastroenterology, 42(5), 346–351.

    CAS  Google Scholar 

  • Nuero, O. M., & Reyes, F. (2002). Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Letters in Applied Microbiology, 34(6), 413–416.

    CAS  Google Scholar 

  • Osawa, R., Rainey, F., Fujisawa, T., Lang, E., Busse, H. J., Walsh, T. P., et al. (1995). Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Systematic and Applied Microbiology, 18(3), 368–373.

    CAS  Google Scholar 

  • Osawa, R., Fujisawa, T., & Pukall, R. (2006). Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. International Journal of Systematic and Evolutionary Microbiology, 56(7), 1693–1696.

    CAS  Google Scholar 

  • Pepi, M., Lampariello, L. R., Altieri, R., Esposito, A., Perra, G., Renzi, M., et al. (2010). Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. International Biodeterioration and Biodegradation, 64(1), 73–80.

    CAS  Google Scholar 

  • Peterson, R. A., Bradner, J. R., Roberts, T. H., & Nevalainen, K. M. H. (2009). Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates. Letters in Applied Microbiology, 48(2), 218–225.

    CAS  Google Scholar 

  • Raghuwanshi, S., Dutt, K., Gupta, P., Misra, S., & Saxena, RK. (2011). Bacillus sphaericus: The highest bacterial tannase producer with potential for gallic acid synthesis. Journal of Bioscience and Bioengineering, in press. doi:10.1016/j.jbiosc.2011.02.008.

  • Rajakumar, G., & Nandy, S. C. (1983). Isolation, purification, and some properties of Penicillium chrysogenum tannase. Applied and Environmental Microbiology, 46(2), 525–527.

    CAS  Google Scholar 

  • Ramirez-Coronel, M. A., Viniegra-Gonzalez, G., Darvill, A., & Augur, C. (2003). A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology, 149(10), 2941–2946.

    CAS  Google Scholar 

  • Rana, N. K., & Bhat, T. K. (2005). Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. The Journal of General and Applied Microbiology, 51(4), 203–212.

    CAS  Google Scholar 

  • Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, 73(5), 1516–1528.

    CAS  Google Scholar 

  • Renovato, J., Gutiérrez-Sánchez, G., Rodríguez-Durán, LV., Bergman, C., Rodríguez, R., & Aguilar, CN. (2011). Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Applied Biochemistry and Biotechnology, in press. doi:10.3109/02652048.02652011.02552988.

  • Rout, S., & Banerjee, R. (2006). Production of tannase under mSSF and its application in fruit juice debittering. Indian Journal of Biotechnology, 5(3), 346–350.

    CAS  Google Scholar 

  • Sariozlu, N. Y., & Kivanc, M. (2009). Isolation of gallic acid-producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. African Journal of Biotechnology, 8(6), 1110–1115.

    CAS  Google Scholar 

  • Sasaki, E., Shimada, T., Osawa, R., Nishitani, Y., Spring, S., & Lang, E. (2005). Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Systematic and Applied Microbiology, 28(4), 358–365.

    Google Scholar 

  • Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875–3883.

    CAS  Google Scholar 

  • Schons, P. F., Lopes, F. C. R., Battestin, V., & Macedo, G. A. (2011). Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme. Journal of Microencapsulation, 28(3), 211–219.

    CAS  Google Scholar 

  • Seiji, D., Shinmyo, A., Enatsu, T., & Terui, G. (1973). Growth-associated production of tannase by a strain of Aspergillus oryzae. Fermentation Engineering Magazine, 51(11), 768–774.

    Google Scholar 

  • Selwal, M. K., Yadav, A., Selwal, K. K., Aggarwal, N. K., Gupta, R., & Gautam, S. K. (2011). Tannase production by Penicillium atramentosum KM under SSF and its applications in wine clarification and tea cream solubilization. Brazilian Journal of Microbiology, 42(1), 374–387.

    CAS  Google Scholar 

  • Sharma, S., & Gupta, M. N. (2003). Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaqueous media. Bioorganic & Medicinal Chemistry Letters, 13(3), 395–397.

    CAS  Google Scholar 

  • Sharma, K. P., & John, P. J. (2011). Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochemistry, 46(1), 240–244.

    CAS  Google Scholar 

  • Sharma, S., Bhat, T. K., & Dawra, R. K. (1999). Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World Journal of Microbiology & Biotechnology, 15(6), 673–677.

    CAS  Google Scholar 

  • Sharma, S., Agarwal, L., & Saxena, R. K. (2008). Purification, immobilization and characterization of tannase from Penicillium variable. Bioresource Technology, 99(7), 2544–2551.

    CAS  Google Scholar 

  • Shi, B., He, Q., Yao, K., Huang, W., & Li, Q. (2005). Production of ellagic acid from degradation of valonea tannins by Aspergillus niger and Candida utilis. Journal of Chemical Technology and Biotechnology, 80(10), 1154–1159.

    CAS  Google Scholar 

  • Singh, B., Bhat, T. K., & Sharma, O. P. (2001). Biodegradation of tannic acid in an in vitro ruminal system. Livestock Production Science, 68(2–3), 259–262.

    Google Scholar 

  • Skene, I. K., & Brooker, J. D. (1995). Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe, 1(6), 321–327.

    CAS  Google Scholar 

  • Srivastava, A., & Kar, R. (2009). Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Brazilian Journal of Microbiology, 40(4), 782–789.

    CAS  Google Scholar 

  • Srivastava, A., & Kar, R. (2010). Application of immobilized tannase from Aspergillus niger for the removal of tannin from myrobalan juice. Indian Journal of Microbiology, 50(S1), 46–51.

    Google Scholar 

  • Su, E., Xia, T., Gao, L., Dai, Q., & Zhang, Z. (2009). Immobilization and characterization of tannase and its haze-removing. Food Science and Technology International, 15(6), 545–552.

    CAS  Google Scholar 

  • Swain, T. (1977). Secondary compounds as protective agents. Annual Review of Plant Physiology, 28(1), 479–501.

    CAS  Google Scholar 

  • Van De Lagemaat, J., & Pyle, D. L. (2001). Solid-state fermentation and bioremediation: Development of a continuous process for the production of fungal tannase. Chemical Engineering Journal, 84(2), 115–123.

    Google Scholar 

  • Viniegra-González, G., Favela-Torres, E., Aguilar, C., Romero-Gómez, S. D. J., Díaz Godínez, G., & Augur, C. (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal, 13(2–3), 157–167.

    Google Scholar 

  • William, F., Boominathan, K., Vasudevan, N., Gurujeyalakshmi, G., & Mahadevan, A. (1986). Microbial degradation of lignin and tannin. Journal of Scientific and Industrial Research, 45, 232–243.

    CAS  Google Scholar 

  • Yamada, H., Adachi, O., Watanabe, M., & Ogata, K. (1968). Tannase (tannin acyl hydrolase), a typical serine esterase. Agricultural and Biological Chemistry, 32(2), 257–258.

    CAS  Google Scholar 

  • Yamada, H., Adachi, O., Watanabe, M., & Sato, N. (1968). Studies on fungal tannase part I. Formation, purification and catalytic properties of tannase of Aspergillus flavus. Agricultural and Biological Chemistry, 32(9), 1070–1078.

    CAS  Google Scholar 

  • Yu, X. W., & Li, Y. Q. (2005). Microencapsulated mycelium-bound tannase from Aspergillus niger: An efficient catalyst for esterification of propyl gallate in organic solvents. Applied Biochemistry and Biotechnology, 126(3), 177–187.

    CAS  Google Scholar 

  • Yu, X. W., & Li, Y. Q. (2008). Expression of Aspergillus oryzae tannase in Pichia pastoris and its application in the synthesis of propyl gallate in organic solvent. Food Technology and Biotechnology, 46(1), 80–85.

    CAS  Google Scholar 

  • Yu, X., Li, Y., & Wu, D. (2004). Microencapsulation of tannase by chitosan-alginate complex coacervate membrane: Synthesis of antioxidant propyl gallate in biphasic media. Journal of Chemical Technology and Biotechnology, 79(5), 475–479.

    CAS  Google Scholar 

  • Zeida, M., Wieser, M., Yoshida, T., Sugio, T., & Nagasawa, T. (1998). Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Applied and Environmental Microbiology, 64(12), 4743–4747.

    CAS  Google Scholar 

  • Zhong, X., Peng, L., Zheng, S., Sun, Z., Ren, Y., Dong, M., et al. (2004). Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expression and Purification, 36(2), 165–169.

    CAS  Google Scholar 

  • Zhu, Y., Smits, J. P., Knol, W., & Bol, J. (1994). A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnology Letters, 16(6), 643–648.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the National Council of Science and Technology of Mexico (CONACYT) for funding this study. Authors Mónica Chávez-González and Luis Rodríguez-Duran thank CONACYT for the financial support provided for their postgraduate studies in the Food Science and Technology Program, Universidad Autónoma de Coahuila, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez-González, M., Rodríguez-Durán, L.V., Balagurusamy, N. et al. Biotechnological Advances and Challenges of Tannase: An Overview. Food Bioprocess Technol 5, 445–459 (2012). https://doi.org/10.1007/s11947-011-0608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0608-5

Keywords

Navigation