Food and Bioprocess Technology

, Volume 5, Issue 2, pp 409–424 | Cite as

Microwave-Assisted Extraction of Flavonoids: A Review

  • Winny Routray
  • Valérie OrsatEmail author
Review Paper


Flavonoids are major bioactive compounds known to be beneficial against many chronic diseases such as cancer, cardiovascular disorders, and inflammation. Food products obtained from plants are key sources of flavonoids for humans. However, during different food-processing steps, flavonoids are lost in remarkable amounts. Supplementation of flavonoids as a food additive will help in retaining the required health-beneficial amount of flavonoids in the diet, and extraction is an important step in the preparation of food additives. Microwave extraction is one of the most advanced extraction methods, which has the potential of playing a major role in flavonoid extraction and analytical quantification. The present paper reviews the potential application of microwave extraction for flavonoids and the advantage of microwave-assisted process over the other extraction processes generally employed for extraction.


Flavonoids Microwave-assisted extraction Extraction 


  1. Abourashed, E. A., Vanderplank, J. R., & Khan, I. A. (2002). High-speed extraction and HPLC fingerprinting of medicinal plants—I. Application to Passiflora flavonoids. Pharmaceutical Biology, 40(2), 81–91.CrossRefGoogle Scholar
  2. Abu-Samra, A., Morris, J. S., & Koirtyohann, S. R. (1975). Wet ashing of some biological samples in a microwave oven. Analytical Chemistry, 47(8), 1475–1477.CrossRefGoogle Scholar
  3. Akhtar, M. H. (2005). Comparison of microwave assisted extraction with conventional (homogenization, vortexing) for the determination of incurred salinomycin in chicken eggs and tissues. Journal of Environmental Science and Health. Part B, 39(5), 835–844.Google Scholar
  4. Barnabas, I. J., Dean, J. R., Fowlis, I. A., & Owen, S. P. (1995). Extraction of polycyclic aromatic hydrocarbons from highly contaminated soils using microwave energy. The Analyst, 120(7), 1897–1904.CrossRefGoogle Scholar
  5. Birt, D. F., Hendrich, S., & Wang, W. (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics, 90(2–3), 157–177.CrossRefGoogle Scholar
  6. Bravo, L., & Mateos, R. (2008). Analysis of flavonoids in functional foods and nutraceuticals. In W. J. Hurst (Ed.), Methods of analysis for functional foods and nutraceuticals (2nd ed.). Boca Raton: CRC Press.Google Scholar
  7. Camel, V. (2001). Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. The Analyst, 126(7), 1182–1193.CrossRefGoogle Scholar
  8. Cannell, R. J. P. (1998). How to approach the isolation of a natural product? In R. J. P. Cannell (Ed.), Methods in biotechnology 4. Natural products isolation (pp. 1–51). Totowa: Humana Press.CrossRefGoogle Scholar
  9. Casazza, A. A., Aliakbarian, B., Mantegna, S., Cravotto, G., & Perego, P. (2010). Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. Journal of Food Engineering, 100(1), 50–55.CrossRefGoogle Scholar
  10. Catchpole, O. J., Grey, J. B., Mitchell, K. A., & Lan, J. S. (2004). Supercritical antisolvent fractionation of propolis tincture. Journal of Supercritical Fluids, 29(1–2), 97–106.CrossRefGoogle Scholar
  11. Chandra, A. K., & De, N. (2010). Goitrogenic/Antithyroidal potential of green tea extract in relation to catechin in rats. Food and Chemical Toxicology, 48(8–9), 2304–2311.CrossRefGoogle Scholar
  12. Chandra, A. K., De, N., & Roy Choudhury, S. (2010). Effect of different doses of un-fractionated green & black tea extracts on thyroid physiology. Human & Experimental Toxicology, doi: 10.1177/0960327110382563.
  13. Chen, L., Ding, L., Zhang, H., Li, J., Wang, Y., Wang, X., et al. (2006). Dynamic microwave-assisted extraction coupled with on-line spectrophotometric determination of safflower yellow in Flos carthami. Analytica Chimica Acta, 580(1), 75–82.CrossRefGoogle Scholar
  14. Chen, L. G., Ding, L., Yu, A. M., Yang, R. L., Wang, X. P., Li, J. T., et al. (2007a). Continuous determination of total flavonoids in Platycladus orientalis (L.) Franco by dynamic microwave-assisted extraction coupled with on-line derivatization and ultraviolet-visible detection. Analytica Chimica Acta, 596(1), 164–170.CrossRefGoogle Scholar
  15. Chen, L., Ding, L., Jin, H., Song, D., Zhang, H., Li, J., et al. (2007b). The determination of organochlorine pesticides based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography. Analytica Chimica Acta, 589(2), 239–246.CrossRefGoogle Scholar
  16. Chen, L., Jin, H., Ding, L., Zhang, H., Wang, X., Wang, Z., et al. (2007c). On-line coupling of dynamic microwave-assisted extraction with high-performance liquid chromatography for determination of andrographolide and dehydroandrographolide in Andrographis paniculata Nees. Journal of Chromatography A, 1140(1–2), 71–77.CrossRefGoogle Scholar
  17. Chen, X. J., Guo, B. L., Li, S. P., Zhang, Q. W., Tu, P. F., & Wang, Y. T. (2007d). Simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and high-performance liquid chromatography. Journal of Chromatography A, 1163(1–2), 96–104.CrossRefGoogle Scholar
  18. Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., & Qu, C. (2008). Dynamic microwave-assisted extraction of flavonoids from Herba epimedii. Separation and Purification Technology, 59(1), 50–57.CrossRefGoogle Scholar
  19. Cherdshewasart, W., Subtang, S., & Dahlan, W. (2007). Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. Journal of Pharmaceutical and Biomedical Analysis, 43(2), 428–434.CrossRefGoogle Scholar
  20. Dai, J., Orsat, V., Raghavan, G. S. V., & Yaylayan, Y. (2010). Investigation of various facotrs for the extraction of peppermint (Mentha piperita L.) leaves. Journal of Food Engineering, 96(4), 540–543.CrossRefGoogle Scholar
  21. Datta, A. K., Sumnu, G., & Raghavan, G. S. V. (2005). Dielectric properties of foods. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of Foods, chapter 11 (3rd ed., pp. 501–566). New York: Taylor & Francis.Google Scholar
  22. de Rijke, E., Out, P., Niessen, W., Ariese, F., Gooijer, C., & Brinkman, U. A. T. (2006). Analytical separation and detection methods for flavonoids. Journal of Chromatography A, 1112(1–2), 31–63.Google Scholar
  23. Ding, L., Li, Y., Li, M. J., Liu, Z. Y., & Zhang, H. Q. (2003). A novel microwave-assisted extraction method for extracting flavonoids from Radix et caulis acanthopanacis senticosi. Chemical Journal of Chinese Universities-Chinese, 24(8), 1403–1405.Google Scholar
  24. Du, F. Y., Xiao, X. H., & Li, G. K. (2007). Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma polygoni Cuspidati. Journal of Chromatography A, 1140(1–2), 56–62.CrossRefGoogle Scholar
  25. Du, F. Y., Xiao, X. H., Luo, X. J., & Li, G. K. (2009). Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta, 78(3), 1177–1184.CrossRefGoogle Scholar
  26. Escribano-Bailon, M. T., & Santos-Buelga, C. (2003). Polyphenol extraction from foods. In C. Santos-Buelga & G. Williamson (Eds.), Methods in Polyphenol Analysis (pp. 1–16). London: RSC Publishing.Google Scholar
  27. Fan, J. P., Zhang, R. F., & Zhu, J. H. (2010). Optimization of microwave assisted extraction of total triterpenoid in Diospyros kaki leaves using response surface methodology. Asian Journal of Chemistry, 22(5), 3487–3500.Google Scholar
  28. Farid, R., Rezaieyazdi, Z., Mirfeizi, Z., Hatef, M. R., Mirheidari, M., Mansouri, H., et al. (2010). Oral intake of purple passion fruit peel extract reduces pain and stiffness and improves physical function in adult patients with knee osteoarthritis. Nutrition Research, 30(9), 601–606.CrossRefGoogle Scholar
  29. Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2007). Comparison of different isolation methods of essential oil from citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’distillation. Flavour and Fragrance Journal, 22(6), 494–504.CrossRefGoogle Scholar
  30. Ganzler, K., Salgo, A., & Valko, K. (1986). Microwave extraction: A novel sample preparation method for chromatography. Journal of Chromatography A, 371, 299–306.CrossRefGoogle Scholar
  31. Gao, M., Song, B. Z., & Liu, C. Z. (2006). Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochemical Engineering Journal, 32(2), 79–83.CrossRefGoogle Scholar
  32. Garcia-Ayuso, L. E., Sanchez, M., de Alba, A. F., & de Castro, M. D. L. (1998). Focused microwave-assisted soxhlet: An advantageous tool for sample extraction. Analytical Chemistry, 70(11), 2426–2431.CrossRefGoogle Scholar
  33. Guillen, D., Barroso, C., & Perez-Bustamante, J. (1996). Automation of sample preparation as a preliminary stage in the high-performance liquid chromatographic determination of polyphenolic compounds in sherry wines. Journal of Chromatography A, 730(1–2), 39–46.CrossRefGoogle Scholar
  34. Han, K. K., Soares, J. M., Jr., Haidar, M. A., de Lima, G. R., & Baracat, E. C. (2002). Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstetrics and Gynecology, 99(3), 389.CrossRefGoogle Scholar
  35. Harborne, J. B., Mabry, T. J., & Mabry, H. (1975). The Flavonoids. London, UK: Chapman & Hall.Google Scholar
  36. Hendry, G. A. F., & Houghton, J. D. (1996). Natural food colorants (2nd ed.). Blackie Academic and Professional, an imprint of Chapman and Hall, Glasgow, UK.Google Scholar
  37. Herrmann, K. (1976). Flavonols and flavones in food plants: a review. International Journal of Food Science & Technology, 11(5), 433–448.CrossRefGoogle Scholar
  38. Hu, Z., Cai, M., & Liang, H. H. (2008). Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix bupleuri. Separation and Purification Technology, 61(3), 266–275.CrossRefGoogle Scholar
  39. Husni, A., Shin, I. S., You, S., & Chung, D. (2009). Antioxidant properties of water and aqueous ethanol extracts and their crude saponin fractions from a far-eastern sea cucumber, Stichopus japonicus. Food Science and Biotechnology, 18(2), 419–424.Google Scholar
  40. Ibanez, E., Kubátová, A., Señoráns, F. J., Cavero, S., Reglero, G., & Hawthorne, S. B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. Journal of Agricultural and Food Chemistry, 51(2), 375–382.CrossRefGoogle Scholar
  41. Jain, T., Jain, V., Pandey, R., Vyas, A., & Shukla, S. S. (2009). Microwave assisted extraction for phytoconstituents—an overview. Asian Journal of Research in Chemistry, 2(1), 19–25.Google Scholar
  42. Jang, M. J., Sheu, S. R., Wang, C. C., Yeh, Y. L., & Sung, K. H. (2009). Optimization analysis of the experimental parameters on the extraction process of propolis. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Volume 2, 18–20 March 2009, Hong Kong, China.Google Scholar
  43. Jin, Q., Liang, F., Zhang, H., Zhao, L., & Huan, Y. (1999). Application of microwave techniques in analytical chemistry. TrAC-Trends in Analytical Chemistry, 18(7), 479–484.CrossRefGoogle Scholar
  44. Kalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effect of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. Journal of Agricultural and Food Chemistry, 56(21), 10129–10134.CrossRefGoogle Scholar
  45. Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: microwave assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13(2), 105–113.CrossRefGoogle Scholar
  46. Khajeh, M., Reza Akbari Moghaddam, A., & Sanchooli, E. (2009). Application of doehlert design in the optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Analytical Methods. doi: 10.1007/s12161-009-9099-7, 1-5.Google Scholar
  47. Kiss, G. A. C., Forgács, E., Cserháti, T., Mota, T., Morais, H., & Ramos, A. (2000). Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. Journal of Chromatography A, 889(1–2), 41–49.CrossRefGoogle Scholar
  48. Kothari, V., & Seshadri, S. (2010). Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. Nutrition and Food Science, 40(4), 403–408.CrossRefGoogle Scholar
  49. Kratchanova, M., Pavlova, E., & Panchev, I. (2004). The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers, 56(2), 181–185.CrossRefGoogle Scholar
  50. Kris-Etherton, P. M., & Keen, C. L. (2002). Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Current Opinion in Lipidology, 13(1), 41.CrossRefGoogle Scholar
  51. Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., et al. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9), 71–88.CrossRefGoogle Scholar
  52. Kubrakova, I. V., & Toropchenova, E. S. (2008). Microwave heating for enhancing efficiency of analytical operations (Review). Inorganic Materials, 44(14), 1509–1519.CrossRefGoogle Scholar
  53. Letellier, M., & Budzinski, H. (1999). Microwave assisted extraction of organic compounds. Analusis, 27(3), 259–270.CrossRefGoogle Scholar
  54. Li, M., You, J., Liu, Z., & Zhang, H. (2004). Microwave-assisted dynamic extraction of flavonoids from Flos sophaoae. Chemical Research In Chinese Universities, 25, 850–852.Google Scholar
  55. Li, W., Li, T., & Tang, K. (2009). Flavonoids from mulberry leaves by microwave-assisted extract and anti-fatigue activity. African Journal of Agricultural Research, 4(9), 898–902.Google Scholar
  56. Li, S. A., Zhu, R. H., Zhong, M., Zhang, Y. P., Huang, K. L., Zhi, X., et al. (2010). Effects of ultrasonic-assistant extraction parameters on total flavones yield of Selaginella doederleinii and its antioxidant activity. Journal of Medicinal Plants Research, 4(17), 1743–1750.Google Scholar
  57. Liazid, A., Palma, M., Brigui, J., & Barroso, C. G. (2007). Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A, 1140(1–2), 29–34.CrossRefGoogle Scholar
  58. Liu, Z., Yan, G., Bu, F., Sun, J., Hu, X., & Zhang, H. (2005). Analysis of chemical composition of Acanthopanax senticosus leaves applying high-pressure microwave-assisted extraction. Chemia Analityczna, 50(5), 851–861.Google Scholar
  59. Liu, Z., Ding, L., Zhang, H., Hu, X., & Bu, F. (2006). Comparison of the different extraction methods of flavonoids in Epimedium koreamum Nakai by HPLC-DAD-ESI-MSn. Journal of Liquid Chromatography and Related Technologies, 29(5), 719–731.CrossRefGoogle Scholar
  60. Liza, M. S., Rahman, R. A., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., et al. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88(C2-3), 319–326.CrossRefGoogle Scholar
  61. Llompart, M. P., Lorenzo, R. A., Cela, R., & Pare, J. R. J. (1997a). Optimization of a microwave-assisted extraction method for phenol and methylphenol isomers in soil samples using a central composite design. The Analyst, 122(2), 133–137.CrossRefGoogle Scholar
  62. Llompart, M. P., Lorenzo, R. A., Cela, R., Pare, J. R. J., Belanger, J. M. R., & Li, K. (1997b). Phenol and methylphenol isomers determination in soils by in-situ microwave-assisted extraction and derivatisation. Journal of Chromatography A, 757(1–2), 153–164.CrossRefGoogle Scholar
  63. Lou, Z. X., Wang, H. X., Zhu, S., Zhang, M., Gao, Y., Ma, C. Y., et al. (2010). Improved extraction and identification by ultra performance liquid chromatography tandem mass spectrometry of phenolic compounds in burdock leaves. Journal of Chromatography A, 1217(16), 2441–2446.CrossRefGoogle Scholar
  64. Lu, J., Wu, D., Zheng, Y., Hu, B., Zhang, Z., Shan, Q., et al. (2010). Quercetin activates AMP activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol induced neurotoxicity. The Journal of Pathology, 222(2), 199–212.CrossRefGoogle Scholar
  65. Lucchesi, M. E., Chemat, F., & Smadja, J. (2004a). An original solvent free microwave extraction of essential oils from spices. Flavour and Fragrance Journal, 19(2), 134–138.CrossRefGoogle Scholar
  66. Lucchesi, M. E., Chemat, F., & Smadja, J. (2004b). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043(2), 323–327.CrossRefGoogle Scholar
  67. Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W., & Chemat, F. (2007). Solvent free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering, 79(3), 1079–1086.CrossRefGoogle Scholar
  68. Luque de Castro, M. D., & Garcia-Ayuso, L. E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369(1–2), 1–10.CrossRefGoogle Scholar
  69. Ma, W., Lu, Y., Dai, X., Liu, R., Hu, R., & Pan, Y. (2009). Determination of anti-tumor constitute mollugin from traditional chinese medicine Rubia cordifolia: comparative study of classical and microwave extraction techniques. Separation Science and Technology, 44(4), 995–1006.CrossRefGoogle Scholar
  70. Macdonald, I. O., Oludare, A. S., & Olabiyi, A. (2010). Phytotoxic and anti-microbial activities of flavonoids in Ocimum gratissimum. Life Science Journal-Acta Zhengzhou University Overseas Edition, 7(3), 45–48.Google Scholar
  71. Majumdar, S., & Srirangam, R. (2010). Potential of the bioflavonoids in the prevention/treatment of ocular disorders. The Journal of Pharmacy and Pharmacology, 62(8), 951–965.Google Scholar
  72. Maksinovic, Z., Malencic, D., & Kovacevic, N. (2005). Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technology, 96(8), 873–877.CrossRefGoogle Scholar
  73. Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1), 7–18.Google Scholar
  74. Manthey, J. A., Guthrie, N., & Grohmann, K. (2001). Biological properties of citrus flavonoids pertaining to cancer and inflammation. Current Medicinal Chemistry, 8(2), 135–153.Google Scholar
  75. Mao, Y., Li, Y., & Yao, N. (2007). Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 45(3), 510–515.Google Scholar
  76. Mao, W. H., Han, L. J., & Shi, B. (2008). Optimization of microwave-assisted extraction of flavonoid from Radix astragali using response surface methodology. Separation Science and Technology, 43(3), 671–681.CrossRefGoogle Scholar
  77. Mennen, L. I., Sapinho, D., de Bree, A., Arnault, N., Bertrais, S., Galan, P., et al. (2004). Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. The Journal of Nutrition, 134(4), 923–926.Google Scholar
  78. Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.Google Scholar
  79. Montedoro, G., Servili, M., Baldioli, M., & Miniati, E. (1992). Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. Journal of Agricultural and Food Chemistry, 40(9), 1571–1576.CrossRefGoogle Scholar
  80. Moosmann, B., & Behl, C. (2002). Antioxidants as treatment for neurodegenerative disorders. Expert Opinion on Investigational Drugs, 11(10), 1407–1435.CrossRefGoogle Scholar
  81. Pan, Y. M., He, C. H., Wang, H. S., Ji, X. W., Wang, K., & Liu, P. Z. (2010). Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chemistry, 121(2), 497–502.CrossRefGoogle Scholar
  82. Paré, J. R. J., Sigouin, M., & Lapointe, J. (1991). Microwave-assisted natural products extraction. US Patent 5002784.Google Scholar
  83. Pérez-Serradilla, J. A., Japón-Luján, R., & Luque de Castro, M. D. (2007). Simultaneous microwave-assisted solid-liquid extraction of polar and nonpolar compounds from alperujo. Analytica Chimica Acta, 602(1), 82–88.CrossRefGoogle Scholar
  84. Périno-Issartier, S., Zill e, H., Abert-Vian, M., & Chemat, F. (2010). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, doi: 10.1007/s11947-010-0438-x
  85. Prados-Rosales, R. C., Herrera, M. C., Luque-García, J. L., & Luque de Castro, M. D. (2002). Study of the feasibility of focused microwave-assisted soxhlet extraction of N-methylcarbamates from soil. Journal of Chromatography A, 953(1–2), 133–140.CrossRefGoogle Scholar
  86. Prados-Rosales, R. C., Luque Garcia, J. L., & Luque de Castro, M. D. (2003). Rapid analytical method for the determination of pesticide residues in sunflower seeds based on focused microwave-assisted soxhlet extraction prior to gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 993(1–2), 121–129.CrossRefGoogle Scholar
  87. Prasad, K. N., Yang, B., Zhao, M., Sun, J., Wei, X., & Jiang, Y. (2010). Effects of high pressure or ultrasonic treatment on extraction yield and antioxidant activity of pericarp tissues of longan fruit. Journal of Food Biochemistry, 34(4), 838–855.Google Scholar
  88. Qian, Z. M., Lu, J., Gao, Q. P., & Li, S. P. (2009). Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium ginseng and Radix ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry. Journal of Chromatography A, 1216(18), 3825–3830.CrossRefGoogle Scholar
  89. Rao, G. H. (2010). Optimization of ultrasound-assisted extraction of cyanidin 3-rutinoside from litchi (Lichi chinensis Sonn.) fruit pericarp. Analytical Methods, 2(8), 1166–1170.CrossRefGoogle Scholar
  90. Raynie, D. E. (2006). Modern extraction techniques. Analitical Chemistry, 78(12), 3997–4004.CrossRefGoogle Scholar
  91. Regier, M., & Schubert, H. (2005). Introducing microwave processing of food: principles and technologies. In H. Schubert & M. Regier (Eds.), The microwave processing of foods. Boca Raton: CRC Press.Google Scholar
  92. Roberts, J. S., & Gerard, K. A. (2004). Development and evaluation of microwave heating of apple mash as a pretreatment to pressing. Journal of Food Process Engineering, 27(1), 29–46.CrossRefGoogle Scholar
  93. Rodriguez-Meizoso, I., Marin, F. R., Herrero, M., Señorans, F. J., Reglero, G., Cifuentes, A., et al. (2006). Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1560–1565.CrossRefGoogle Scholar
  94. Søltoft, M., Christensen, J. H., Nielsen, J., & Knuthsen, P. (2009). Pressurised liquid extraction of flavonoids in onions. Method development and validation. Talanta, 80(1), 269–278.CrossRefGoogle Scholar
  95. Song, J. Z., Mo, S. F., Yip, Y. K., Qiao, C. F., Han, Q. B., & Xu, H. X. (2007). Development of microwave assisted extraction for the simultaneous determination of isoflavonoids and saponins in Radix astragali by high performance liquid chromatography. Journal of Separation Science, 30(6), 819–824.CrossRefGoogle Scholar
  96. Sparr Eskilsson, C., & Björklund, E. (2000). Analytical-scale microwave-assisted extraction. Journal of Chromatography A, 902(1), 227–250.CrossRefGoogle Scholar
  97. Stafford, H. A. (1990). Flavonoid metabolism. Boca Raton: CRC Press.Google Scholar
  98. Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268–3295.CrossRefGoogle Scholar
  99. Sun, Y., Liao, X., Wang, Z., Hu, X., & Chen, F. (2007). Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography–mass spectrometry. European Food Research and Technology, 225(3), 511–523.CrossRefGoogle Scholar
  100. Sun, C., Xie, Y., Tian, Q., & Liu, H. (2008). Analysis of glycyrrhizic acid and liquiritin in liquorice root with microwave-assisted micellar extraction and pre-concentration. Phytochemical Analysis, 19(2), 160–163.CrossRefGoogle Scholar
  101. Tan, S. N., Yong, J. W. H., Teo, C. C., Ge, L., Chan, Y. W., & Hew, C. S. (2011). Determination of metabolites in Uncaria sinensis by HPLC and GC-MS after green solvent microwave-assisted extraction. Talanta, 83(3), 891–898.CrossRefGoogle Scholar
  102. Tang, J. (2005). Dielectric properties of foods. In H. Schubert & M. Regier (Eds.), The microwave processing of foods. Boca Raton: CRC Press.Google Scholar
  103. Terigar, B. G., Balasubramanian, S., Boldor, D., Xu, Z., Lima, M., & Sabliov, C. M. (2010). Continuous microwave-assisted isoflavone extraction system: design and performance evaluation. Bioresource Technology, 101(7), 2466–2471.CrossRefGoogle Scholar
  104. Trendafilova, A., & Todorova, M. (2008). Comparison of different techniques for extraction of biologically active compounds from Achillea millefolium Proa. Natural Product Communications, 3(9), 1515–1518.Google Scholar
  105. Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147–157.CrossRefGoogle Scholar
  106. Tsukayama, M., Sasaki, T., Yamamoto, K., Kawamura, Y., & Ichikawa, R. (2010). Microwave-assisted extraction and methylation of useful flavones from waste peels of Citrus sudachi. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi, 57(10), 427–433.CrossRefGoogle Scholar
  107. Vichapong, J., Sookserm, M., Srijesdaruk, V., Swatsitang, P., & Srijaranai, S. (2010). High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT Food Science and Technology, 43(9), 1325–1330.CrossRefGoogle Scholar
  108. Victório, C. P., Lage, C. L. S., & Kuster, R. M. (2009). Flavonoid extraction from Alpinia zerumbet (Pers.) Burtt et Smith leaves using different techniques and solvents. Ecletica Quimica, 34(1), 19–24.Google Scholar
  109. Waksmundzka-Hajnos, M., Wianowska, D., Oniszczuk, A., & Dawidowicz, A. L. (2008). Effect of sample-preparation methods on the quantification of selected flavonoids in plant materials by high performance liquid chromatography. Acta Chromatographica, 20(3), 475–488.CrossRefGoogle Scholar
  110. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17(6), 300–312.CrossRefGoogle Scholar
  111. Wang, Z., Ding, L., Li, T., Zhou, X., Wang, L., Zhang, H., et al. (2006). Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. Journal of Chromatography A, 1102(1–2), 11–17.CrossRefGoogle Scholar
  112. Wang, J. X., Xiao, X. H., & Li, G. K. (2008a). Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography A, 1198–1199(1–2), 45–53.CrossRefGoogle Scholar
  113. Wang, Y., You, J., Yu, Y., Qu, C., Zhang, H., Ding, L., et al. (2008b). Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chemistry, 110(1), 161–167.CrossRefGoogle Scholar
  114. Wang, Y. L., Xi, G. S., Zheng, Y. C., & Miao, F. S. (2010). Microwave-assisted extraction of flavonoids from Chinese herb Radix puerariae (Ge Gen). Journal of Medicinal Plant Research, 4(4), 304–308.Google Scholar
  115. Wianowska, D., Hajnos, M., Dawidowicz, A. L., Oniszczuk, A., Waksmundzka-Hajnos, M., & Gowniak, K. (2009). Extraction methods of 10-deacetylbaccatin iii, paclitaxel, and cephalomannine from Taxus baccata L. twigs: a comparison. Journal of Liquid Chromatography and Related Technologies, 32(4), 589–601.CrossRefGoogle Scholar
  116. Wong, M. K., Wei, G. U., & Ng, T. L. (1997). Sample preparation using microwave assisted digestion or extraction techniques. Analytical Sciences, 13, 97–102.CrossRefGoogle Scholar
  117. Xiao, W., Han, L., & Shi, B. (2008). Microwave-assisted extraction of flavonoids from Radix astragali. Separation and Purification Technology, 62(3), 614–618.CrossRefGoogle Scholar
  118. Yan, M. M., Liu, W., Fu, Y. J., Zu, Y. G., Chen, C. Y., & Luo, M. (2010). Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix astragali. Food Chemistry, 119(4), 1663–1670.CrossRefGoogle Scholar
  119. Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innovative Food Science & Emerging Technologies, 11(3), 470–476.CrossRefGoogle Scholar
  120. Yang, L., Cao, Y. L., Jiang, J. G., Lin, Q. S., Chen, J., & Zhu, L. (2010). Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. Journal of Separation Science, 33(9), 1349–1355.Google Scholar
  121. Yeoh, S., Zhang, S., Shi, J., & Langrish, T. A. G. (2008). A comparison of different techniques for water-based extraction of pectin from orange peels. Chemical Engineering Communications, 195(5), 511–520.CrossRefGoogle Scholar
  122. Yu, J., Dandekar, D. V., Toledo, R. T., Singh, R. K., & Patil, B. S. (2007). Supercritical fluid extraction of limonoids and naringin from grapefruit (Citrus paradisi Macf.) seeds. Food Chemistry, 105(3), 1026–1031.CrossRefGoogle Scholar
  123. Zhang, K., Wang, X., Ding, L., Li, J., Qu, C., Chen, L., et al. (2008). Determination of seven major ginsenosides in different parts of Panax quinquefolius L. (American ginseng) with different ages. Chemical Research in Chinese Universities, 24(6), 707–711.Google Scholar
  124. Zhang, F., Yang, Y., Su, P., & Guo, Z. (2009). Microwave assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb. Phytochemical Analysis, 20(1), 33–37.CrossRefGoogle Scholar
  125. Zhongdong, L., Guohua, W., Yunchang, G., & Kennedy, J. F. (2006). Image study of pectin extraction from orange skin assisted by microwave. Carbohydrate Polymers, 64(4), 548–552.CrossRefGoogle Scholar
  126. Zhou, T., Yang, B., Zhang, H., Yu, Y., Chen, B., Chen, Y., et al. (2009). Identification of volatile compounds in Chrysanthemum morifolium by microwave distillation solid-phase microextraction coupled with GC/MS. Journal of AOAC International, 92(3), 855–861.Google Scholar
  127. Zhu, H. B., Wang, Y. Z., Liu, Y. X., Xia, Y. L., & Tang, T. (2010). Analysis of flavonoids in Portulaca oleracea L. by uv-vis spectrophotometry with comparative study on different extraction technologies. Food Analytical Methods, 3(2), 90–97.CrossRefGoogle Scholar
  128. Zill-e-Huma, Abert Vian, M., Maingonnat, J. F., & Chemat, F. (2009). Clean recovery of antioxidant flavonoids from onions: optimising solvent free microwave extraction method. Journal of Chromatography A, 1216(45), 7700–7707.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bioresource Engineering Department, Macdonald CampusMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations